1
|
Shah FA, Albaqami F, Alattar A, Alshaman R, Zaitone SA, Gabr AM, Abdel-Moneim AMH, dosoky ME, Koh PO. Quercetin attenuated ischemic stroke induced neurodegeneration by modulating glutamatergic and synaptic signaling pathways. Heliyon 2024; 10:e28016. [PMID: 38571617 PMCID: PMC10987936 DOI: 10.1016/j.heliyon.2024.e28016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
Ischemic strokes originate whenever the circulation to the brain is interrupted, either temporarily or permanently, resulting in a lack of oxygen and other nutrients. This deprivation primarily impacts the cerebral cortex and striatum, resulting in neurodegeneration. Several experimental stroke models have demonstrated that the potent antioxidant quercetin offers protection against stroke-related damage. Multiple pathways have been associated with quercetin's ability to safeguard the brain from ischemic injury. This study examines whether the administration of quercetin alters glutamate NMDA and GluR1 receptor signaling in the cortex and striatum 72 h after transient middle cerebral artery occlusion. The administration of 10 mg/kg of quercetin shielded cortical and striatal neurons from cell death induced by ischemia in adult SD rats. Quercetin reversed the ischemia-induced reduction of NR2a/PSD95, consequently promoting the pro-survival AKT pathway and reducing CRMP2 phosphorylation. Additionally, quercetin decreased the levels of reactive oxygen species and inflammatory pathways while increasing the expression of the postsynaptic protein PSD95. Our results suggest that quercetin may be a promising neuroprotective drug for ischemic stroke therapy as it recovers neuronal damage via multiple pathways.
Collapse
Affiliation(s)
- Fawad Ali Shah
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Faisal Albaqami
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Abdullah Alattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Reem Alshaman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Sawsan A. Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Attia M. Gabr
- Pharmacology and Therapeutics Department, College of Medicine, Qassim University, Qassim, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Abdel-Moneim Hafez Abdel-Moneim
- Department of Physiology, College of Medicine, Qassim University, Qassim, Saudi Arabia
- Department of Physiology, Faculty of Medicine, Mansoura University, Egypt
| | - Mohamed El dosoky
- Department of Neuroscience Technology, College of Applied Medical Sciences in Jubail, Imam Abdulrahman Bin Faisal University, Jubail, Saudi Arabia
| | - Phil Ok Koh
- Department of Anatomy and Histology, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju, 52828, South Korea
| |
Collapse
|
2
|
Investigation of the Effects of Monosodium Glutamate on the Embryonic Development of the Eye in Chickens. Vet Sci 2023; 10:vetsci10020099. [PMID: 36851403 PMCID: PMC9958917 DOI: 10.3390/vetsci10020099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
MSG is the most ubiquitous food additive in the food industry. The aim of this report was to investigate the effects of in ovo MSG administration on embryonic chicken eye development using histological and histometric methods. A total of 410 fertilized eggs obtained from Babcock Brown laying hens (Gallus gallus domesticus) were used and divided into 5 groups: I (untreated control), II (vehicle control), III (0.12 mg/g egg MSG), IV (0.6 mg/g egg MSG), and V (1.2 mg/g egg MSG), and injections were performed via the egg yolk. At incubation day 15, 18, and 21, 6 embryos from each group were sacrificed by decapitation and pieces of eye tissue were obtained. In all MSG groups, it was determined that both corneal epithelium thickness and total corneal thickness decreased at incubation time points 15, 18, and 21 days compared with the controls (p < 0.05). The total retinal thickness, thickness of the outer nuclear layer (ONL), inner nuclear layer (INL), ganglion cell layer (GL), and nerve fibre layers (NFL), as well as the number of ganglion cells decreased significantly at incubation days 15, 18, and 21 (p < 0.05), and degenerative changes such as vacuolar degeneration and retinal pigment epithelial detachment were also observed. In conclusion, MSG in ovo administration can affect the cornea and distinct layers of retinal cells.
Collapse
|
3
|
Sümer Coşkun A, Bedel HA, Munzuroğlu M, Derin N, Usta C. Does Resveratrol Prevent Sevoflurane Toxicity in Newborn Rats? J Med Food 2022; 25:557-563. [PMID: 35420459 DOI: 10.1089/jmf.2021.0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Inhalation anesthetics have been shown to cause neurodevelopmental disorders and neurotoxic effects. In this study, we aimed to investigate the effect of resveratrol on the possible neurotoxic effect of sevoflurane and the brain-derived neurotrophic factor (BDNF) pathway in newborn rats. The animals were divided into four groups: control, sevoflurane, sevoflurane+resveratrol 25 mg/kg, and sevoflurane+resveratrol 50 mg/kg. The groups that received anesthesia were given 3% sevoflurane for 2 h on the postnatal seventh, eighth, and ninth days. Control gas was applied to the control group. The Morris water maze (MWM) test was performed on postnatal 35th day. After performing the open field test on the postnatal 41st day, the animals were dissected, and the hippocampal BDNF levels were determined by Western blot method. In the MWM test, there was a significant decrease in the time spent in the target quadrant in the sevoflurane anesthesia group compared with control group. This reduction was reversed with the resveratrol pretreatment. Sevoflurane exposure significantly decreased hippocampal BDNF levels compared with the control group. The resveratrol 25 mg/kg pretreatment did not reverse this reduction, whereas resveratrol 50 mg/kg ameliorated this impairment. Sevoflurane did not cause any significant difference in the rats' performance in the open field test. However, 50 mg/kg resveratrol pretreatment caused a statistically significant increase in this performance. Our results showed that sevoflurane impaired learning and memory functions in newborn rats and resveratrol reversed this deterioration. Also BDNF might play a role in this beneficial effect of resveratrol.
Collapse
Affiliation(s)
| | - Hatice Aslı Bedel
- Pharmacology Department, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Mustafa Munzuroğlu
- Biophysics Department, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Narin Derin
- Biophysics Department, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Coşkun Usta
- Pharmacology Department, Akdeniz University Faculty of Medicine, Antalya, Turkey
| |
Collapse
|