1
|
Hazart D, Moulzir M, Delhomme B, Oheim M, Ricard C. Imaging the enteric nervous system. Front Neuroanat 2025; 19:1532900. [PMID: 40145027 PMCID: PMC11937143 DOI: 10.3389/fnana.2025.1532900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
The enteric nervous system (ENS) has garnered increasing scientific interest due to its pivotal role in digestive processes and its involvement in various gastrointestinal and central nervous system (CNS) disorders, including Crohn's disease, Parkinson's disease, and autism. Despite its significance, the ENS remains relatively underexplored by neurobiologists, primarily because its structure and function are less understood compared to the CNS. This review examines both pioneering methodologies that initially revealed the intricate layered structure of the ENS and recent advancements in studying its three-dimensional (3-D) organization, both in fixed samples and at a functional level, ex-vivo or in-vivo. Traditionally, imaging the ENS relied on histological techniques involving sequential tissue sectioning, staining, and microscopic imaging of single sections. However, this method has limitations representing the full complexity of the ENS's 3-D meshwork, which led to the development of more intact preparations, such as whole-mount preparation, as well as the use of volume imaging techniques. Advancements in 3-D imaging, particularly methods like spinning-disk confocal, 2-photon, and light-sheet microscopies, combined with tissue-clearing techniques, have revolutionized our understanding of the ENS's fine structure. These approaches offer detailed views of its cellular architecture, including interactions among various cell types, blood vessels, and lymphatic vessels. They have also enhanced our comprehension of ENS-related pathologies, such as inflammatory bowel disease, Hirschsprung's disease (HSCR), and the ENS's involvement in neurodegenerative disorders like Parkinson's (PD) and Alzheimer's diseases (AD). More recently, 2-photon or confocal in-vivo imaging, combined with transgenic approaches for calcium imaging, or confocal laser endomicroscopy, have opened new avenues for functional studies of the ENS. These methods enable real-time observation of enteric neuronal and glial activity and their interactions. While routinely used in CNS studies, their application to understanding local circuits and signals in the ENS is relatively recent and presents unique challenges, such as accommodating peristaltic movements. Advancements in 3-D in-vivo functional imaging are expected to significantly deepen our understanding of the ENS and its roles in gastrointestinal and neurological diseases, potentially leading to improved diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Doriane Hazart
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
- Doctoral School Brain, Cognition and Behaviour – ED3C - ED 158, Paris, France
| | - Marwa Moulzir
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | - Brigitte Delhomme
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | - Martin Oheim
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | - Clément Ricard
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| |
Collapse
|
2
|
Zhang X, Qi F, Yang J, Xu C. Distribution and ultrastructural characteristics of enteric glial cell in the chicken cecum. Poult Sci 2024; 103:104070. [PMID: 39094494 PMCID: PMC11345566 DOI: 10.1016/j.psj.2024.104070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Enteric glial cell (EGC) is involved in neuroimmune regulation within the enteric nervous system (ENS); however, limited information exists on the distribution and ultrastructure of EGC in the poultry gut. We aim to investigate the morphological features and distribution of EGC in the chicken cecum. Here, we investigated the distribution and ultrastructural features of chicken cecum EGC using immunohistochemistry (IHC) and transmission electron microscopy (TEM). IHC showed that EGC was widely distributed throughout the chicken cecum. In the mucosal layer, EGC was morphologically irregular, with occasionally interconnecting protrusions that outlined signal-negative neurons. The morphology of EGC in the submucosal layer was also irregular. In the inner circular muscle layer and between the inner circular and outer longitudinal muscle layers, EGC aligned parallel to the circular muscle cells. A small number of EGC with an irregular morphology were found in the outer longitudinal muscle layer. In addition, in the submucosal and myenteric plexus, EGC were aggregated, and the protrusions of the immunoreactive cells interconnected to outline the bodies of nonreactive neurons. TEM-guided ultrastructural characterization confirmed the IHC findings that EGC were morphologically irregular and revealed they developed either a star, bipolar, or fibrous shape. The nucleus was also irregular, with electron-dense heterochromatin distributed in the center of the nucleus or on the nuclear membrane. The cytoplasm contained many glial filaments and vesicle-containing protrusions from neuronal cells; organelles were rare. EGC was in close contact with other cells in their vicinity. These findings suggest that EGC is well-situated to exert influence on intestinal motility and immune functions through mechanical contraction and chemical secretion.
Collapse
Affiliation(s)
- Xiaoting Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Fenghua Qi
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Jie Yang
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Chunsheng Xu
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China.
| |
Collapse
|
3
|
Murase S, Mantani Y, Ohno N, Shimada A, Nakanishi S, Morishita R, Yokoyama T, Hoshi N. Regional differences in the ultrastructure of mucosal macrophages in the rat large intestine. Cell Tissue Res 2024; 396:245-253. [PMID: 38485763 DOI: 10.1007/s00441-024-03883-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/25/2024] [Indexed: 04/28/2024]
Abstract
We previously clarified the histological characteristics of macrophages in the rat small intestine using serial block-face scanning electron microscopy (SBF-SEM). However, the regional differences in the characteristics of macrophages throughout the large intestine remain unknown. Here, we performed a pilot study to explore the regional differences in the ultrastructure of mucosal macrophages in the large intestine by using SBF-SEM analysis. SBF-SEM analysis conducted on the luminal side of the cecum and descending colon revealed macrophages as amorphous cells possessing abundant lysosomes and vacuoles. Macrophages in the cecum exhibited a higher abundance of lysosomes and a lower abundance of vacuoles than those in the descending colon. Macrophages with many intraepithelial cellular processes were observed beneath the intestinal superficial epithelium in the descending colon. Moreover, macrophages in contact with nerve fibers were more prevalent in the cecum than in the descending colon, and a subset of them surrounded a nerve bundle only in the cecum. In conclusion, the present pilot study suggested that the quantity of some organelles (lysosomes and vacuoles) in macrophages differed between the cecum and the descending colon and that there were some region-specific subsets of macrophages like nerve-associated macrophages in the cecum.
Collapse
Affiliation(s)
- Shota Murase
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, Hyogo, 657-8501, Japan
| | - Youhei Mantani
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, Hyogo, 657-8501, Japan.
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, School of Medicine, Shimotsuke, Tochigi, 329-0498, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Asaka Shimada
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, Hyogo, 657-8501, Japan
| | - Satoki Nakanishi
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, Hyogo, 657-8501, Japan
| | - Rinako Morishita
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, Hyogo, 657-8501, Japan
| | - Toshifumi Yokoyama
- Laboratory of Animal Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, Hyogo, 657-8501, Japan
| | - Nobuhiko Hoshi
- Laboratory of Animal Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, Hyogo, 657-8501, Japan
| |
Collapse
|