1
|
MIMURA Y, HIONO T, HUYNH LT, OGINO S, KOBAYASHI M, ISODA N, SAKODA Y. Establishment of a superinfection exclusion method for pestivirus titration using a recombinant reporter pestiviruses. J Vet Med Sci 2024; 86:389-395. [PMID: 38355118 PMCID: PMC11061576 DOI: 10.1292/jvms.24-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
Pestiviruses are classified into two biotypes based on their cytopathogenicity. As the majority of pestivirus field isolates are noncytopathogenic, their titration requires alternative methods rather than direct observation of cytopathogenic effects, such as immunostaining using specific antibodies or interference with cytopathogenic strains. However, these methods require microscopic observation to assess virus growth, which is time- and labor-intensive, especially when handling several samples. In this study, we developed a novel luciferase-based pestivirus titration method using the superinfection exclusion phenomenon with recombinant reporter pestiviruses that possessed an 11-amino-acid subunit derived from NanoLuc luciferase (HiBiT). In this method, swine kidney cells were inoculated with classical swine fever virus (CSFV) and superinfected with the reporter CSFV vGPE-/HiBiT 5 days postinoculation. Virus titer was determined based on virus growth measured in luminescence using the culture fluid 3 days after superinfection; the resultant virus titer was comparable to that obtained by immunoperoxidase staining. Furthermore, this method has proven to be applicable for the titration of border disease virus (BDV) by superinfection with both the homologous reporter BDV and heterologous reporter CSFV, suggesting that this novel virus titration method is a simple technique for automated virus detection based on the luciferase system.
Collapse
Affiliation(s)
- Yume MIMURA
- Laboratory of Microbiology, Department of Disease Control,
Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Takahiro HIONO
- Laboratory of Microbiology, Department of Disease Control,
Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Hokkaido,
Japan
- International Collaboration Unit, International Institute
for Zoonosis Control, Hokkaido University, Hokkaido, Japan
- Hokkaido University Institute for Vaccine Research and
Development (HU-IVReD), Hokkaido University, Hokkaido, Japan
| | - Loc Tan HUYNH
- Laboratory of Microbiology, Department of Disease Control,
Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- Faculty of Veterinary Medicine, College of Agriculture, Can
Tho University, Can Tho, Vietnam
| | - Saho OGINO
- Laboratory of Microbiology, Department of Disease Control,
Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Maya KOBAYASHI
- Laboratory of Microbiology, Department of Disease Control,
Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Norikazu ISODA
- Laboratory of Microbiology, Department of Disease Control,
Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Hokkaido,
Japan
- International Collaboration Unit, International Institute
for Zoonosis Control, Hokkaido University, Hokkaido, Japan
- Hokkaido University Institute for Vaccine Research and
Development (HU-IVReD), Hokkaido University, Hokkaido, Japan
| | - Yoshihiro SAKODA
- Laboratory of Microbiology, Department of Disease Control,
Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Hokkaido,
Japan
- International Collaboration Unit, International Institute
for Zoonosis Control, Hokkaido University, Hokkaido, Japan
- Hokkaido University Institute for Vaccine Research and
Development (HU-IVReD), Hokkaido University, Hokkaido, Japan
| |
Collapse
|
2
|
Reuscher CM, Schmidt L, Netsch A, Lamp B. Characterization of a Cytopathogenic Reporter CSFV. Viruses 2021; 13:1209. [PMID: 34201706 PMCID: PMC8310069 DOI: 10.3390/v13071209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022] Open
Abstract
Cytopathogenic (cp) pestiviruses frequently emerge in cattle that are persistently infected with the bovine viral diarrhea virus (BVDV) as a consequence of RNA recombination and mutation. They induce apoptosis in infected tissue cultures, are highly attenuated in the immunocompetent host, and unable to establish persistent infections after diaplacental infections. Cp strains of BVDV have been used as naturally attenuated live vaccines and for species-specific plaque reduction tests for the indirect serological detection of BVDV. Here, we present a genetically engineered cp strain of the classical swine fever virus (CSFV). Cytopathogenicity of the strain was induced by the insertion of ubiquitin embedded in a large NS3 to NS4B duplication. The CSFV RNA genome was stabilized by the inactivation of the NS2 autoprotease, hindering the deletion of the insertion and the reversion to a wild-type genome. Additional insertion of a mCherry gene at the 5'-end of the E2 gene allowed fluorescence-verified plaque reduction assays for CSFV, thus providing a novel, cost-efficient diagnostic tool. This genetically stabilized cp CSFV strain could be further used as a basis for potential new modified live vaccines. Taken together, we applied reverse genetics to rationally fixate a typical cp NS3 duplication in a CSFV genome.
Collapse
Affiliation(s)
- Carina Maria Reuscher
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University, Biomedical Research Center, Schubertstrasse 81, 35392 Giessen, Germany
| | - Lisa Schmidt
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University, Biomedical Research Center, Schubertstrasse 81, 35392 Giessen, Germany
| | - Anette Netsch
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University, Biomedical Research Center, Schubertstrasse 81, 35392 Giessen, Germany
| | - Benjamin Lamp
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University, Biomedical Research Center, Schubertstrasse 81, 35392 Giessen, Germany
| |
Collapse
|
3
|
Ito S, Jurado C, Bosch J, Ito M, Sánchez-Vizcaíno JM, Isoda N, Sakoda Y. Role of Wild Boar in the Spread of Classical Swine Fever in Japan. Pathogens 2019; 8:pathogens8040206. [PMID: 31653072 PMCID: PMC6963481 DOI: 10.3390/pathogens8040206] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 11/21/2022] Open
Abstract
Since September 2018, nearly 900 notifications of classical swine fever (CSF) have been reported in Gifu Prefecture (Japan) affecting domestic pig and wild boar by the end of August 2019. To determine the epidemiological characteristics of its spread, a spatio-temporal analysis was performed using actual field data on the current epidemic. The spatial study, based on standard deviational ellipses of official CSF notifications, showed that the disease likely spread to the northeast part of the prefecture. A maximum significant spatial association estimated between CSF notifications was 23 km by the multi-distance spatial cluster analysis. A space-time permutation analysis identified two significant clusters with an approximate radius of 12 and 20 km and 124 and 98 days of duration, respectively. When the area of the identified clusters was overlaid on a map of habitat quality, approximately 82% and 75% of CSF notifications, respectively, were found in areas with potential contact between pigs and wild boar. The obtained results provide information on the current CSF epidemic, which is mainly driven by wild boar cases with sporadic outbreaks on domestic pig farms. These findings will help implement control measures in Gifu Prefecture.
Collapse
Affiliation(s)
- Satoshi Ito
- Research Center for Zoonosis Control, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan.
- VISAVET Center and Animal Health Department, University Complutense of Madrid, 28040 Madrid, Spain.
| | - Cristina Jurado
- VISAVET Center and Animal Health Department, University Complutense of Madrid, 28040 Madrid, Spain.
| | - Jaime Bosch
- VISAVET Center and Animal Health Department, University Complutense of Madrid, 28040 Madrid, Spain.
| | - Mitsugi Ito
- Akabane Animal Clinic, Co. Ltd., 55 Ishizoe, Akabane-cho, Tahara, Aichi-ken, 441-3502, Japan.
| | | | - Norikazu Isoda
- Research Center for Zoonosis Control, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan.
- Global Station for Zoonosis Control, Global Institute for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0020, Japan.
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0018, Japan.
| |
Collapse
|
4
|
Raut SD, Rajak KK, Kumar R, Singh VK, Saxena A, Chaudhary D, Muthuchelvan D, Pandey AB. Characterization of cytopathogenicity of classical swine fever virus isolate induced by Newcastle disease virus. Virusdisease 2015; 26:70-6. [PMID: 26436124 DOI: 10.1007/s13337-015-0253-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 05/12/2015] [Indexed: 11/25/2022] Open
Abstract
Classical swine fever virus (CSFV), the causative agent of classical swine fever, belongs to the family Flaviviridae and genus Pestivirus. Some pestiviruses exhibit cytopathic effect in cell culture but exact phenomenon is unknown. Over expression of NS2-3 gene, presence of defective interfering particle and exaltation of Newcastle disease virus (END) phenomenon could be the reasons of cytopathogenicity. In the present study, a CSFV isolate exhibiting cytopathic effect (CPE) in Madin-Darby Canine Kidney (MDCK) cell line was characterized. To characterize cytopathogenicity of such isolate, END test was carried out. Interference of Newcastle disease virus (NDV) in MDCK adapted CSFV was confirmed by RT-PCR and virus neutralization test. Absence of CPE and NDV specific nucleic acid after neutralization confirmed the induction of CPE by NDV. Further, identity of the CSFV isolate in MDCK cell line by immunoperoxidase test, immunoblotting and RT-PCR post NDV neutralization established the virus replication without CPE (non-cytopathic isolate). Findings suggest that, there could be a chance of mixed infection of both CSFV and NDV in the piglet from which the sample was collected for virus isolation.
Collapse
Affiliation(s)
- S D Raut
- Classical Swine Fever Virus Laboratory, Division of Virology, Indian Veterinary Research Institute, Campus Mukteswar, Nainital, 263 138 Uttarakhand India
| | - K K Rajak
- Classical Swine Fever Virus Laboratory, Division of Virology, Indian Veterinary Research Institute, Campus Mukteswar, Nainital, 263 138 Uttarakhand India
| | - R Kumar
- Classical Swine Fever Virus Laboratory, Division of Virology, Indian Veterinary Research Institute, Campus Mukteswar, Nainital, 263 138 Uttarakhand India
| | - V K Singh
- Department of Microbiology, DUVASU, Mathura, Uttar Pradesh India
| | - A Saxena
- Classical Swine Fever Virus Laboratory, Division of Virology, Indian Veterinary Research Institute, Campus Mukteswar, Nainital, 263 138 Uttarakhand India
| | - D Chaudhary
- Classical Swine Fever Virus Laboratory, Division of Virology, Indian Veterinary Research Institute, Campus Mukteswar, Nainital, 263 138 Uttarakhand India
| | - D Muthuchelvan
- Classical Swine Fever Virus Laboratory, Division of Virology, Indian Veterinary Research Institute, Campus Mukteswar, Nainital, 263 138 Uttarakhand India
| | - A B Pandey
- Classical Swine Fever Virus Laboratory, Division of Virology, Indian Veterinary Research Institute, Campus Mukteswar, Nainital, 263 138 Uttarakhand India
| |
Collapse
|
5
|
Hepatitis C Virus Deletion Mutants Are Found in Individuals Chronically Infected with Genotype 1 Hepatitis C Virus in Association with Age, High Viral Load and Liver Inflammatory Activity. PLoS One 2015; 10:e0138546. [PMID: 26405760 PMCID: PMC4583497 DOI: 10.1371/journal.pone.0138546] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/01/2015] [Indexed: 01/08/2023] Open
Abstract
Hepatitis C virus (HCV) variants characterized by genomic deletions in the structural protein region have been sporadically detected in liver and serum of hepatitis C patients. These defective genomes are capable of autonomous RNA replication and are packaged into infectious viral particles in cells co-infected with the wild-type virus. The prevalence of such forms in the chronically HCV-infected population and the impact on the severity of liver disease or treatment outcome are currently unknown. In order to determine the prevalence of HCV defective variants and to study their association with clinical characteristics, a screening campaign was performed on pre-therapy serum samples from a well-characterized cohort of previously untreated genotype 1 HCV-infected patients who received treatment with PEG-IFNα and RBV. 132 subjects were successfully analyzed for the presence of defective species exploiting a long-distance nested PCR assay. HCV forms with deletions predominantly affecting E1, E2 and p7 proteins were found in a surprising high fraction of the subjects (25/132, 19%). Their presence was associated with patient older age, higher viral load and increased necroinflammatory activity in the liver. While the presence of circulating HCV carrying deletions in the E1-p7 region did not appear to significantly influence sustained virological response rates to PEG-IFNα/RBV, our study indicates that the presence of these subgenomic HCV mutants could be associated with virological relapse in patients who did not have detectable viremia at the end of the treatment.
Collapse
|
6
|
Abstract
Pestiviruses are among the economically most important pathogens of livestock. The biology of these viruses is characterized by unique and interesting features that are both crucial for their success as pathogens and challenging from a scientific point of view. Elucidation of these features at the molecular level has made striking progress during recent years. The analyses revealed that major aspects of pestivirus biology show significant similarity to the biology of human hepatitis C virus (HCV). The detailed molecular analyses conducted for pestiviruses and HCV supported and complemented each other during the last three decades resulting in elucidation of the functions of viral proteins and RNA elements in replication and virus-host interaction. For pestiviruses, the analyses also helped to shed light on the molecular basis of persistent infection, a special strategy these viruses have evolved to be maintained within their host population. The results of these investigations are summarized in this chapter.
Collapse
Affiliation(s)
- Norbert Tautz
- Institute for Virology and Cell Biology, University of Lübeck, Lübeck, Germany
| | - Birke Andrea Tews
- Institut für Immunologie, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Gregor Meyers
- Institut für Immunologie, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| |
Collapse
|
7
|
Leifer I, Ruggli N, Blome S. Approaches to define the viral genetic basis of classical swine fever virus virulence. Virology 2013; 438:51-5. [PMID: 23415391 DOI: 10.1016/j.virol.2013.01.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 11/20/2012] [Accepted: 01/18/2013] [Indexed: 10/27/2022]
Abstract
Classical swine fever (CSF), a highly contagious disease of pigs caused by the classical swine fever virus (CSFV), can lead to important economic losses in the pig industry. Numerous CSFV isolates with various degrees of virulence have been isolated worldwide, ranging from low virulent strains that do not result in any apparent clinical signs to highly virulent strains that cause a severe peracute hemorrhagic fever with nearly 100% mortality. Knowledge of the molecular determinants of CSFV virulence is an important issue for effective disease control and development of safe and effective marker vaccines. In this review, the latest studies in the field of CSFV virulence are discussed. The topic of virulence is addressed from different angles; nonconventional approaches like codon pair usage and quasispecies are considered. Future research approaches in the field of CSFV virulence are proposed.
Collapse
Affiliation(s)
- Immanuel Leifer
- Institute of Virology and Immunoprophylaxis (IVI), Sensemattstrasse 293, CH-3147 Mittelhäusern, Switzerland.
| | | | | |
Collapse
|
8
|
Cytopathogenicity of classical Swine Fever virus correlates with attenuation in the natural host. J Virol 2008; 82:9717-29. [PMID: 18653456 DOI: 10.1128/jvi.00782-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For the important livestock pathogens classical swine fever virus (CSFV) and bovine viral diarrhea virus (BVDV), cytopathogenic (cp) and non-cp viruses are distinguished according to the induction of apoptosis in infected tissue culture cells. However, it is currently unknown whether cp CSFV differs from non-cp CSFV with regard to virulence in the acutely infected host. In this study, we generated helper virus-independent CSFV Alfort-Jiv, which encompasses sequences encoding domain Jiv-90 of cellular J-domain protein interacting with viral protein (Jiv). Expanding the knowledge of BVDV, our results suggest that Jiv acts as a regulating cofactor for the nonstructural (NS) protein NS2 autoprotease of CSFV and initiates NS2-3 cleavage in trans. For Alfort-Jiv, the resulting expression of large amounts of NS3 correlated with increased viral RNA synthesis and viral cytopathogenicity. Moreover, both cp Alfort-Jiv and the parental non-cp CSFV strain Alfort-p447 efficiently replicate in cell culture. Animal experiments demonstrated that in contrast to parental non-cp Alfort-p447, infection with cp Alfort-Jiv did not cause disease in pigs but induced high levels of neutralizing antibodies, thus elucidating that cp CSFV is highly attenuated in its natural host. In contrast to virulent Alfort-p447, the attenuated CSFV strain Alfort-Jiv induces the expression of cellular Mx protein in porcine PK-15 cells. Accordingly, the remarkable difference between cp and non-cp CSFV with regard to the ability to cause classical swine fever in pigs correlates with different effects of cp and non-cp CSFV on cellular antiviral defense mechanisms.
Collapse
|
9
|
Xu H, Hong HX, Zhang YM, Guo KK, Deng XM, Ye GS, Yang XY. Cytopathic effect of classical swine fever virus NS3 protein on PK-15 cells. Intervirology 2008; 50:433-8. [PMID: 18204288 DOI: 10.1159/000113467] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 11/12/2007] [Indexed: 11/19/2022] Open
Abstract
In order to further research the relationship between classical swine fever virus' (CSFV) NS3 protein and the cytopathic effect (CPE) in cells infected with the CSFV, and to reveal the effect of protein NS3 on the host cells, the NS3 of CSFV Shimen strain amplified by RT-PCR was subcloned into the pEGFP-C1, named pEGFP-C1-NS3. The insert position, the size and the reading frame were correct for restriction enzyme digestion and sequence analysis. The pEGFP-C1-NS3 and pEGFP-C1 were transfected into PK-15 cells by liposome, and positive cell clones were gained by G418. The NS3-EGFP fusion protein expressed in pEGFP-C1-NS3 cells was observed by inverted fluorescence microscopy and identified by Western blot. The CPE appeared in positive pEGFP-C1-NS3 cells 72 h after passaging, apoptosis detection was also performed on positive pEGFP-C1-NS3 cells and pEGFP-C1 cells 72 h after passaging by TUNEL assay. The apoptosis rates in the positive pEGFP-C1-NS3 and pEGFP-C1 cells were 43.4 and 13.1%, respectively (p < 0.05). The results suggest that the CPE in positive pEGFP-C1-NS3 cells was induced by apoptosis and there is a relationship between the expression of NS3 and apoptosis.
Collapse
Affiliation(s)
- Hao Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Vilcek S, Nettleton PF. Pestiviruses in wild animals. Vet Microbiol 2006; 116:1-12. [PMID: 16839713 DOI: 10.1016/j.vetmic.2006.06.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 04/14/2006] [Accepted: 06/01/2006] [Indexed: 11/17/2022]
Abstract
Pestiviruses are not strictly host-species specific and can infect not only domestic but also wild animals. The most important pestivirus, CSFV, infects domestic pigs and wild boars, which may cause a major problem for successful CSFV eradication programmes. Mainly BVDV specific antibodies have been reported in captive and free-living animals. Virus has been isolated from some of these animal species, but since BVDV can contaminate cell cultures and foetal calf serum, early reports of BVDV isolation have to be considered with caution. Genetic typing of early pestivirus isolates from wild species revealed that the majority were BVDV-1. Of the pestiviruses identified so far three species (CSFV, BVDV-1, giraffe pestivirus) and three genotypes (BDV-2, BDV-4, pronghorn) appear to circulate in wildlife animal populations. The potential for pestiviruses to spread between farm animals and free-living animals is discussed as are epidemiological and technical problems, and the future direction of research.
Collapse
Affiliation(s)
- S Vilcek
- University of Veterinary Medicine, Depatment of Infectious Diseases and Parasitology, Komenskeho 73, 041 81 Kosice, Slovakia
| | | |
Collapse
|
11
|
Yagi S, Mori K, Shiota K. Implications of the HCV subgenome discovery for viral pathogenesis, persistence and proliferation. Future Virol 2006. [DOI: 10.2217/17460794.1.4.425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The hepatitis C virus (HCV) subgenome with an in-frame deletion for envelope proteins has been identified in active chronic hepatitis C patients. The revealed features of the HCV subgenome share structural and biological similarities with the defective interfering particles of the RNA viruses, thus suggesting that the HCV subgenome is probably an HCV-defective interfering genome. The HCV subgenome provides an insight into the life cycle of HCV, the mechanisms of RNA replication and virus packaging, and the etiology of the progressive worsening of HCV-induced liver disease.
Collapse
Affiliation(s)
- Shintaro Yagi
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences, Graduate School of Agricultural & Life Sciences, The Universit of Tokyo 1–1-1 Yayoi, Bunkyo-ku, Tokyo, 113–8657, Japan
| | - Kenichi Mori
- Advanced Life Science Institute, Inc., 2–10–23 Maruyamadi, Wako, Saitama, 351–0112, Japan
| | - Kunio Shiota
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences, Graduate School of Agricultural & Life Sciences, The Universit of Tokyo 1–1-1 Yayoi, Bunkyo-ku, Tokyo, 113–8657, Japan
| |
Collapse
|
12
|
Bauhofer O, Summerfield A, McCullough KC, Ruggli N. Role of double-stranded RNA and Npro of classical swine fever virus in the activation of monocyte-derived dendritic cells. Virology 2005; 343:93-105. [PMID: 16154171 DOI: 10.1016/j.virol.2005.08.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 06/25/2005] [Accepted: 08/12/2005] [Indexed: 11/18/2022]
Abstract
Classical swine fever virus (CSFV) is a noncytopathogenic (ncp) positive-sense RNA virus that replicates in myeloid cells including macrophages and dendritic cells (DC). The virus does not induce type I interferon (IFN-alpha/beta), which in macrophages has been related to the presence of the viral Npro gene. In the present work, the role of viral double-stranded (ds)RNA and Npro in the virus-host cell interaction has been analyzed. Higher levels of detectable dsRNA were produced by a genetically engineered cytopathogenic (cp) CSFV compared with ncp CSFV, and cp CSFV induced IFN-alpha/beta in PK-15 cells. With DC, there was only a small difference in the levels of dsRNA between the cp and ncp viruses, and no IFN-alpha/beta was produced. However, the cp virus induced a higher degree of DC maturation, in terms of CD80/86 and MHC II expression. Npro deletion mutants induced an increase in DC maturation and IFN-alpha/beta production-for both ncp and cp viruses-despite reduced replication efficiency in the DC. Deletion of Npro did not influence dsRNA levels, indicating that the interference was downstream of dsRNA turnover regulation. In conclusion, the capacity of CSFV to replicate in myeloid DC, and prevent IFN-alpha/beta induction and DC maturation, requires both regulated dsRNA levels and the presence of viral Npro.
Collapse
Affiliation(s)
- Oliver Bauhofer
- Institute of Virology and Immunoprophylaxis (IVI), Sensemattstrasse 293, CH-3147 Mittelhäusern, Switzerland.
| | | | | | | |
Collapse
|
13
|
Yagi S, Mori K, Tanaka E, Matsumoto A, Sunaga F, Kiyosawa K, Yamaguchi K. Identification of novel HCV subgenome replicating persistently in chronic active hepatitis C patients. J Med Virol 2005; 77:399-413. [PMID: 16173026 DOI: 10.1002/jmv.20469] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In an effort to clarify the life cycle of HCV, the HCV genome in liver biopsies taken from chronic active hepatitis C patients undergoing interferon treatment was investigated. Molecular cloning by long distance reverse-transcription polymerase chain reaction (RT-PCR) revealed that the HCV genome in two patients with high viral loads in the liver had in-frame deletions of approximately 2 kb between E1 and NS2, which encode the E1-NS2 fusion protein and six other HCV proteins: core, NS3, NS4A, NS4B, NS5A, and NS5B. Among the remaining 21 chronic active hepatitis C patients, these types of deletion were found in another two patients and in two hepatocellular carcinoma patients. Out-of-frame deletions in the structural region were isolated from the other five patients, but the dominant RT-PCR products were non-truncated genomes. Retrospective analysis of a series of serum samples taken from a patient carrying the subgenome with the in-frame deletion revealed that both the subgenome and the full genome persisted through the 2-year period of investigation, with the subgenome being predominant during this period. Sequence analysis of the isolated cDNA suggested that both the subgenome and the full genome evolved independently. Western blotting analysis of HCV proteins from the HCV subgenome indicated that they were processed in the same way as those from the full genome. HCV subgenomes thus appear to be involved in the HCV life cycle.
Collapse
Affiliation(s)
- Shintaro Yagi
- R&D Group, Advanced Life Science Institute, Inc., Saitama, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Gallei A, Rümenapf T, Thiel HJ, Becher P. Characterization of helper virus-independent cytopathogenic classical swine fever virus generated by an in vivo RNA recombination system. J Virol 2005; 79:2440-8. [PMID: 15681445 PMCID: PMC546568 DOI: 10.1128/jvi.79.4.2440-2448.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Molecular analyses revealed that most cytopathogenic (cp) pestivirus strains evolve from noncytopathogenic (noncp) viruses by nonhomologous RNA recombination. In contrast to bovine viral diarrhea virus (BVDV), cp classical swine fever virus (CSFV) field isolates were rarely detected and always represented helper virus-dependent subgenomes. To investigate RNA recombination in more detail, we recently established an in vivo system allowing the efficient generation of recombinant cp BVDV strains in cell culture after transfecting a synthetic subgenomic and nonreplicatable transcript into cells being infected with noncp BVDV (A. Gallei, A. Pankraz, H.-J. Thiel, and P. Becher, J. Virol. 78:6271-6281, 2004). Using an analogous approach, the first helper virus-independent cp CSFV strain (CP G1) has now been generated by RNA recombination. Accordingly, this study demonstrates the applicability of RNA recombination for designing new viral RNA genomes. The genomic RNA of CP G1 has a calculated size of 18.139 kb, almost 6 kb larger than all previously described CSFV genomes. It contains cellular sequences encoding a polyubiquitin fragment directly upstream of the nonstructural protein NS3 coding gene together with a duplication of viral sequences. CP G1 induces a cytopathic effect on different tissue culture cell lines from pigs and cattle. Subsequent analyses addressed growth kinetics, expression of NS3, and genetic stability of CP G1.
Collapse
Affiliation(s)
- Andreas Gallei
- Institut für Virologie, Justus-Liebig-Universität, Giessen, Germany
| | | | | | | |
Collapse
|
15
|
Aoki H, Sakoda Y, Nakamura S, Suzuki S, Fukusho A. Cytopathogenicity of classical swine fever viruses that do not show the exaltation of Newcastle disease virus is associated with accumulation of NS3 in serum-free cultured cell lines. J Vet Med Sci 2004; 66:161-7. [PMID: 15031544 DOI: 10.1292/jvms.66.161] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pestiviruses can be distinguished as two biotypes, cytopathogenic (cp) and noncytopathogenic (noncp), by the morphological changes that they induce during growth in cultured cells. In this study, the cp phenotype of several classical swine fever viruses (CSFV) was evaluated by the detections of the nonstructural proteins NS2-3 and NS3 using immunoprecipitation and Western blotting in different porcine cell lines. Most CSFVs that showed the exaltation of Newcastle disease virus (END) phenomenon (END(+) viruses) did not induce cytopathic effect (CPE) in any cell line, and detections of NS2-3 and NS3 showed a strong signal for NS2-3 in the END(+) virus-infected cells. However, clear CPE was observed in serum-free cultured cells (FS-L3 and CPK-NS) infected with viruses that induce intrinsic interference but did not show the END phenomenon (END(-) viruses), and signal of NS3 was strongly detected than that of NS2-3 in these cells at 72 hr after infection. As the results of the analysis of FS-L3 cells infected with ALD (END(+) virus) and ALD-END(-) virus (END(-) virus) at several incubations, the signal of NS3 detected was strengthened with CPE that become evident progressively. These results suggest that CPE is associated with the accumulation of NS3, which is promoted in serum-free cell lines infected with END(-) viruses. Thus, indicating there is a close relationship between CPE and the quantity of NS3 produced in END(-) CSFV infection.
Collapse
Affiliation(s)
- Hiroshi Aoki
- Assay Division I, National Veterinary Assay Laboratory, Kokubunji, Tokyo, Japan
| | | | | | | | | |
Collapse
|