1
|
Zhang L, Liu Y, Meng G, Liang R, Zhang B, Xia C. Structural and Biophysical Insights into the TCRαβ Complex in Chickens. iScience 2020; 23:101828. [PMID: 33305184 PMCID: PMC7711287 DOI: 10.1016/j.isci.2020.101828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/16/2020] [Accepted: 11/16/2020] [Indexed: 10/25/2022] Open
Abstract
In this work, chicken HPAIV H5N1 epitope-specific TCRαβ (ch-TCRαβ) was isolated and its structure was determined. The Cα domain of ch-TCRαβ does not exhibit the typical structure of human TCRαβ, and the DE loop extends outward, resulting in close proximity between the Cα domain of ch-TCRαβ and CD3εδ/γ. The FG loop of the Cβ domain of ch-TCRαβ is shorter. The changes in the C domains of ch-TCRαβ and the difference in chicken CD3εδ/γ confirm that the complexes formed by TCRαβ and CD3εδ/γ differ from those in humans. In the chicken complex, a positively charged cleft is formed between the two CDR3 loops that might accommodate the acidic side chains of the chicken pMHC-I-bound HPAIV epitope intermediate portion oriented toward ch-TCRαβ. This is the first reported structure of chicken TCRαβ, and it provides a structural model of the ancestral TCR system in the immune synapses between T cells and antigen-presenting cells in lower vertebrates.
Collapse
Affiliation(s)
- Lijie Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China.,Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yanjie Liu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China
| | - Geng Meng
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China
| | - Ruiying Liang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China
| | - Bing Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China
| |
Collapse
|
2
|
Zhang T, Liu G, Wei Z, Wang Y, Kang L, Jiang Y, Sun Y. Genomic organization of the chicken TCRβ locus originated by duplication of a Vβ segment combined with a trypsinogen gene. Vet Immunol Immunopathol 2019; 219:109974. [PMID: 31765881 DOI: 10.1016/j.vetimm.2019.109974] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 10/21/2019] [Accepted: 11/07/2019] [Indexed: 01/09/2023]
Abstract
Based on the latest assembly of the red jungle fowl (Gallus gallus) genome sequence, we characterized the detailed genomic organization of the T cell receptor beta (TCRβ) locus of chicken. The chicken TCRβ locus spans approximately 210 kb, and is organized in a typical translocon organization as previously reported. Within this locus, a total of 16 germline Vβ gene segments were classified into three subgroups, containing 11, four, and one members, respectively. Phylogenetic analysis revealed that the chicken Vβ3.1 segment was homologous with the duck Vβ1 subgroup, and further clustered with Vβ segments from reptiles but not amphibians. We also identified nine protease serine 1 (PRSS1) and three protease serine 2 (PRSS2) genes, which were interspersed within the chicken TCRβ locus. Dot-plot analysis of the chicken TCRβ locus against itself revealed that the 5' part of the locus had arisen through a series of tandem duplication events. The homology units were composed of one Vβ1 segment followed by a PRSS1 gene, or one Vβ2 segment followed by a PRSS2 gene. This duplication pattern, in which the Vβ segments and trypsinogen genes form a duplication unit, was unique to TCRβ loci of chicken and duck, but not observed in TCRβ loci of other tetrapods studied thus far. By analyzing the cloned TCRβ cDNA sequences, we found that the usage pattern of Vβ segments was consistent with the results of previous studies. These studies showed that members of the Vβ1 subgroup are preferentially utilized in V-D-J recombination. Furthermore, we found that the Vβ3.1 segment participated into V-D-J recombination, but at a very low frequency. The length distribution of the chicken complementarity-determining region 3β (CDR3β) showed a tendency similar to that observed for the duck.
Collapse
Affiliation(s)
- Tongtong Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, PR China
| | - Gen Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, PR China
| | - Zhiguo Wei
- College of Animal Science and Technology, Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang City, Henan Province 471023, PR China
| | - Yanchao Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, PR China
| | - Li Kang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, PR China
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, PR China.
| | - Yi Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, PR China.
| |
Collapse
|
3
|
Wang X, Wang P, Wang R, Wang C, Bai J, Ke C, Yu D, Li K, Ma Y, Han H, Zhao Y, Zhou X, Ren L. Analysis of TCRβ and TCRγ genes in Chinese alligator provides insights into the evolution of TCR genes in jawed vertebrates. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 85:31-43. [PMID: 29574022 DOI: 10.1016/j.dci.2018.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/12/2018] [Accepted: 01/12/2018] [Indexed: 06/08/2023]
Abstract
All jawed vertebrates have four T cell receptor (TCR) chains that are expressed by thymus-derived lymphocytes and play a major role in animal immune defence. However, few studies have investigated the TCR chains of crocodilians compared with those of birds and mammals, despite their key evolutionary position linking amphibians, reptiles, birds and mammals. Here, employing an Alligator sinensis genomic bacterial artificial chromosome (BAC) library and available genome data, we characterized the genomic organization, evolution and expression of TRB and TRG loci in Alligator sinensis. According to the sequencing data, the Alligator sinensis TRB locus spans approximately 500 Kb of genomic DNA containing two D-J-C clusters and 43 V gene segments and is organized as Vβ(39)-pJβ1-pCβ1-pDβ1-Dβ2- Jβ2(12)-Cβ2-Vβ(4), whereas the TRG locus spans 115 Kb of DNA genomic sequence consisting of 18 V gene segments, nine J gene segments and one C gene segment and is organized in a classical translocon pattern as Vγ(18)-Jγ(9)-Cγ. Moreover, syntenic analysis of TRB and TRG chain loci suggested a high degree of conserved synteny in the genomic regions across mammals, birds and Alligator sinensis. By analysing the cloned TRB/TRG cDNA, we identified the usage pattern of V families in the expressed TRB and TRG. An analysis of the junctions of the recombined VJ revealed the presence of N and P nucleotides in both expressed TRB and TRG sequences. Phylogenetic analysis revealed that TRB and TRG loci possess distinct evolutionary patterns. Most Alligator sinensis V subgroups have closely related orthologues in chicken and duck, and a small number of Alligator sinensis V subgroups have orthologues in mammals, which supports the hypothesis that crocodiles are the closest relatives of birds and mammals. Collectively, these data provide insights into TCR gene evolution in vertebrates and improve our understanding of the Alligator sinensis immune system.
Collapse
Affiliation(s)
- Xifeng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Peng Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Renping Wang
- Administration Bureau of Chinese Alligator National Nature Reserve Protection, Anhui, People's Republic of China
| | - Chaolin Wang
- Administration Bureau of Chinese Alligator National Nature Reserve Protection, Anhui, People's Republic of China
| | - Jianhui Bai
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Cuncun Ke
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Di Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Kongpan Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Yonghe Ma
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Haitang Han
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Xin Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100193, People's Republic of China; College of Plant Protection, China Agricultural University, Beijing, People's Republic of China.
| | - Liming Ren
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China.
| |
Collapse
|
4
|
A comprehensive analysis of the germline and expressed TCR repertoire in White Peking duck. Sci Rep 2017; 7:41426. [PMID: 28134319 PMCID: PMC5278385 DOI: 10.1038/srep41426] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/19/2016] [Indexed: 12/15/2022] Open
Abstract
Recently, many immune-related genes have been extensively studied in ducks, but relatively little is known about their TCR genes. Here, we determined the germline and expressed repertoire of TCR genes in White Peking duck. The genomic organization of the duck TCRα/δ, TCRγ and unconventional TCRδ2 loci are highly conserved with their counterparts in mammals or chickens. By contrast, the duck TCRβ locus is organized in an unusual pattern, (Vβ)n-Dβ-(Jβ)2-Cβ1-(Jβ)4-Cβ2, which differs from the tandem-aligned clusters in mammals or the translocon organization in some teleosts. Excluding the first exon encoding the immunoglobulin domain, the subsequent exons of the two Cβ show significant diversity in nucleotide sequence and exon structure. Based on the nucleotide sequence identity, 49 Vα, 30 Vδ, 13 Vβ and 15 Vγ unique gene segments are classified into 3 Vα, 5 Vδ, 4 Vβ and 6 Vγ subgroups, respectively. Phylogenetic analyses revealed that most duck V subgroups, excluding Vβ1, Vγ5 and Vγ6, have closely related orthologues in chicken. The coding joints of all cDNA clones demonstrate conserved mechanisms that are used to increase junctional diversity. Collectively, these data provide insight into the evolution of TCRs in vertebrates and improve our understanding of the avian immune system.
Collapse
|
5
|
Ren C, Yin G, Qin M, Suo J, Lv Q, Xie L, Wang Y, Huang X, Chen Y, Liu X, Suo X. CDR3 analysis of TCR Vβ repertoire of CD8⁺ T cells from chickens infected with Eimeria maxima. Exp Parasitol 2014; 143:1-4. [PMID: 24801021 DOI: 10.1016/j.exppara.2014.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/25/2014] [Accepted: 04/23/2014] [Indexed: 02/06/2023]
Abstract
CD8(+) T cells play a major role in the immune protection of host against the reinfection of Eimeria maxima, the most immunogenic species of eimerian parasites in chickens. To explore the dominant complementarity-determining regions 3 (CDR3) of CD8(+) T cell populations induced by the infection of this parasite, sequence analysis was performed in this study for CDR3 of CD8(+) T cells from E. maxima infected chickens. After 5 days post the third or forth infection, intraepithelial lymphocytes were isolated from the jejunum of bird. CD3(+)CD8(+) T cells were sorted and subjected to total RNA isolation and cDNA preparation. PCR amplification and cloning of the loci between Vβ1 and Cβ was conducted for the subsequent sequencing of CDR3 of T cell receptor (TCR). After the forth infection, 2 birds exhibited two same frequent TCR CDR3 sequences, i.e., AKQDWGTGGYSNMI and AGRVLNIQY; while the third bird showed two different frequent TCR CDR3 sequences, AKQGARGHTPLN and AKQDIEVRGPNTPLN. No frequent CDR3 sequence was detected from uninfected birds, though AGRVLNIQY was also found in two uninfected birds. Our result preliminarily demonstrates that frequent CDR3 sequences may exist in E. maxima immunized chickens, encouraging the mining of the immunodominant CD8(+) T cells against E. maxima infection.
Collapse
Affiliation(s)
- Chao Ren
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Guangwen Yin
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Mei Qin
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jingxia Suo
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qiyao Lv
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Li Xie
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yunzhou Wang
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoxi Huang
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yuchen Chen
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xianyong Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Xun Suo
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Mwangi WN, Smith LP, Baigent SJ, Beal RK, Nair V, Smith AL. Clonal structure of rapid-onset MDV-driven CD4+ lymphomas and responding CD8+ T cells. PLoS Pathog 2011; 7:e1001337. [PMID: 21573129 PMCID: PMC3088711 DOI: 10.1371/journal.ppat.1001337] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 04/05/2011] [Indexed: 01/28/2023] Open
Abstract
Lymphoid oncogenesis is a life threatening complication associated with a number of persistent viral infections (e.g. EBV and HTLV-1 in humans). With many of these infections it is difficult to study their natural history and the dynamics of tumor formation. Marek's Disease Virus (MDV) is a prevalent α-herpesvirus of poultry, inducing CD4+ TCRαβ+ T cell tumors in susceptible hosts. The high penetrance and temporal predictability of tumor induction raises issues related to the clonal structure of these lymphomas. Similarly, the clonality of responding CD8 T cells that infiltrate the tumor sites is unknown. Using TCRβ repertoire analysis tools, we demonstrated that MDV driven CD4+ T cell tumors were dominated by one to three large clones within an oligoclonal framework of smaller clones of CD4+ T cells. Individual birds had multiple tumor sites, some the result of metastasis (i.e. shared dominant clones) and others derived from distinct clones of transformed cells. The smaller oligoclonal CD4+ cells may represent an anti-tumor response, although on one occasion a low frequency clone was transformed and expanded after culture. Metastatic tumor clones were detected in the blood early during infection and dominated the circulating T cell repertoire, leading to MDV associated immune suppression. We also demonstrated that the tumor-infiltrating CD8+ T cell response was dominated by large oligoclonal expansions containing both "public" and "private" CDR3 sequences. The frequency of CD8+ T cell CDR3 sequences suggests initial stimulation during the early phases of infection. Collectively, our results indicate that MDV driven tumors are dominated by a highly restricted number of CD4+ clones. Moreover, the responding CD8+ T cell infiltrate is oligoclonal indicating recognition of a limited number of MDV antigens. These studies improve our understanding of the biology of MDV, an important poultry pathogen and a natural infection model of virus-induced tumor formation.
Collapse
Affiliation(s)
- William N. Mwangi
- Avian Infectious Disease Programme, Institute for Animal Health, Compton, Berkshire, United Kingdom
| | - Lorraine P. Smith
- Avian Infectious Disease Programme, Institute for Animal Health, Compton, Berkshire, United Kingdom
| | - Susan J. Baigent
- Avian Infectious Disease Programme, Institute for Animal Health, Compton, Berkshire, United Kingdom
| | - Richard K. Beal
- Avian Infectious Disease Programme, Institute for Animal Health, Compton, Berkshire, United Kingdom
| | - Venugopal Nair
- Avian Infectious Disease Programme, Institute for Animal Health, Compton, Berkshire, United Kingdom
| | - Adrian L. Smith
- Avian Infectious Disease Programme, Institute for Animal Health, Compton, Berkshire, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Mwangi WN, Beal RK, Powers C, Wu X, Humphrey T, Watson M, Bailey M, Friedman A, Smith AL. Regional and global changes in TCRalphabeta T cell repertoires in the gut are dependent upon the complexity of the enteric microflora. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:406-417. [PMID: 19945480 DOI: 10.1016/j.dci.2009.11.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 11/20/2009] [Accepted: 11/21/2009] [Indexed: 05/28/2023]
Abstract
The repertoire of gut associated T cells is shaped by exposure to microbes, including the natural enteric microflora. Previous studies compared the repertoire of gut associated T cell populations in germ free (GF) and conventional mammals often focussing on intra-epithelial lymphocyte compartments. Using GF, conventional and monocolonised (gnotobiotic) chickens and chicken TCRbeta-repertoire analysis techniques, we determined the influence of microbial status on global and regional enteric TCRbeta repertoires. The gut of conventionally reared chickens exhibited non-Gaussian distributions of CDR3-lengths with some shared over-represented peaks in neighbouring gut segments. Sequence analysis revealed local clonal over-representation. Germ-free chickens exhibited a polyclonal, non-selected population of T cells in the spleen and in the gut. In contrast, gnotobiotic chickens exhibited a biased repertoire with shared clones evident throughout the gut. These data indicate the dramatic influence of enteric microflora complexity on the profile of TCRbeta repertoire in the gut at local and global levels.
Collapse
Affiliation(s)
- William N Mwangi
- Division of Immunology, Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Eguchi-Ogawa T, Toki D, Uenishi H. Genomic structure of the whole D-J-C clusters and the upstream region coding V segments of the TRB locus in pig. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:1111-1119. [PMID: 19527749 DOI: 10.1016/j.dci.2009.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 05/22/2009] [Accepted: 06/06/2009] [Indexed: 05/27/2023]
Abstract
In the vertebrate immune system, T cells play a central role in host defense against microbial or viral infection. Previous studies suggested that at least two sets of TRBD-J-C clusters are harbored in the porcine genome. In this study, we determined 212,193 bp of a continuous porcine genomic sequence covering the entire TRBC region. EPHB6, TRPV6, TRY, and ten TRBV genes were conserved in the vicinity of the TRBD-J-C clusters. Interestingly, three TRBD-J-C clusters were identified in this sequence; each TRBD-J-C cluster consisted of one TRBD and seven TRBJ segments, with one TRBC region composed of four exons. The distribution of repetitive sequences and phylogenetic analysis indicated that the TRBD-J-C cluster, located at the center of the three clusters identified, had a structure combined with the others. Most of the TRBJ segments were available in public databases, suggesting that all three TRBD-J-C clusters are functional in pigs.
Collapse
MESH Headings
- Animals
- Artiodactyla/genetics
- Chromosomes, Artificial, Bacterial/genetics
- Cloning, Molecular
- Genes, T-Cell Receptor beta/genetics
- Genome/genetics
- Interspersed Repetitive Sequences/genetics
- Multigene Family
- Phylogeny
- Receptors, Antigen, T-Cell, alpha-beta/classification
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/classification
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Sequence Analysis, DNA
- Swine/genetics
Collapse
Affiliation(s)
- Tomoko Eguchi-Ogawa
- Division of Animal Sciences, National Institute of Agrobiological Sciences (NIAS), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | | | | |
Collapse
|
9
|
Connelley T, Aerts J, Law A, Morrison WI. Genomic analysis reveals extensive gene duplication within the bovine TRB locus. BMC Genomics 2009; 10:192. [PMID: 19393068 PMCID: PMC2685407 DOI: 10.1186/1471-2164-10-192] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 04/24/2009] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Diverse TR and IG repertoires are generated by V(D)J somatic recombination. Genomic studies have been pivotal in cataloguing the V, D, J and C genes present in the various TR/IG loci and describing how duplication events have expanded the number of these genes. Such studies have also provided insights into the evolution of these loci and the complex mechanisms that regulate TR/IG expression. In this study we analyze the sequence of the third bovine genome assembly to characterize the germline repertoire of bovine TRB genes and compare the organization, evolution and regulatory structure of the bovine TRB locus with that of humans and mice. RESULTS The TRB locus in the third bovine genome assembly is distributed over 5 scaffolds, extending to approximately 730 Kb. The available sequence contains 134 TRBV genes, assigned to 24 subgroups, and 3 clusters of DJC genes, each comprising a single TRBD gene, 5-7 TRBJ genes and a single TRBC gene. Seventy-nine of the TRBV genes are predicted to be functional. Comparison with the human and murine TRB loci shows that the gene order, as well as the sequences of non-coding elements that regulate TRB expression, are highly conserved in the bovine. Dot-plot analyses demonstrate that expansion of the genomic TRBV repertoire has occurred via a complex and extensive series of duplications, predominantly involving DNA blocks containing multiple genes. These duplication events have resulted in massive expansion of several TRBV subgroups, most notably TRBV6, 9 and 21 which contain 40, 35 and 16 members respectively. Similarly, duplication has lead to the generation of a third DJC cluster. Analyses of cDNA data confirms the diversity of the TRBV genes and, in addition, identifies a substantial number of TRBV genes, predominantly from the larger subgroups, which are still absent from the genome assembly. The observed gene duplication within the bovine TRB locus has created a repertoire of phylogenetically diverse functional TRBV genes, which is substantially larger than that described for humans and mice. CONCLUSION The analyses completed in this study reveal that, although the gene content and organization of the bovine TRB locus are broadly similar to that of humans and mice, multiple duplication events have led to a marked expansion in the number of TRB genes. Similar expansions in other ruminant TR loci suggest strong evolutionary pressures in this lineage have selected for the development of enlarged sets of TR genes that can contribute to diverse TR repertoires.
Collapse
Affiliation(s)
- Timothy Connelley
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, EH25 9RG, UK
| | - Jan Aerts
- Genome Dynamics and Evolution Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA, UK
| | - Andy Law
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, EH25 9RG, UK
| | - W Ivan Morrison
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, EH25 9RG, UK
| |
Collapse
|
10
|
Antonacci R, Di Tommaso S, Lanave C, Cribiu EP, Ciccarese S, Massari S. Organization, structure and evolution of 41kb of genomic DNA spanning the D-J-C region of the sheep TRB locus. Mol Immunol 2008; 45:493-509. [PMID: 17673294 DOI: 10.1016/j.molimm.2007.05.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 05/21/2007] [Indexed: 11/19/2022]
Abstract
A genomic region of 41,045 bp encompassing the 3'-end of the sheep T cell receptor beta chain was sequenced. Extensive molecular analysis has revealed that this region retains a unique structural feature for the presence of a third D-J-C cluster, never detected in any other mammalian species examined so far. A total of 3 TRBD, 18 TRBJ and 3 substantially identical TRBC genes were identified in about 28kb. At 13kb, downstream from the last TRBC gene, in an inverted transcriptional orientation, lies a TRBV gene. Sequence comparison and phylogenetic analyses have demonstrated that the extra D-J-C cluster originated from an unequal crossing over between the two ancestral TRBC genes. Interspersed repeats spanning 22.2% of the sequence, contribute to the wider size of the sheep TRB locus with respect to the other mammalian counterparts, without modifying the general genomic architecture. The nucleotide and predicted amino acid sequences from peripheral T cells cDNA clones indicated that the genes from cluster 3 are fully implicated in the beta chain recombination machinery. Closer inspections of the transcripts have also shown that inter-cluster rearrangements and splice variants, involving the additional cluster, increase the functional diversity of the sheep beta chain repertoire.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Pairing
- Base Sequence
- Chromosomes, Artificial, Bacterial
- Clone Cells
- DNA/chemistry
- DNA/genetics
- Evolution, Molecular
- Exons/genetics
- Genes, T-Cell Receptor beta
- Genes, T-Cell Receptor delta
- Genome/genetics
- Humans
- Introns/genetics
- Molecular Sequence Data
- Phylogeny
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Sequence Alignment
- Sheep/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- R Antonacci
- Dipartimento di Genetica e Microbiologia, Universita' degli Studi di Bari, Italy.
| | | | | | | | | | | |
Collapse
|