1
|
Antunes S, Domingos A. Tick Vaccines and Concealed versus Exposed Antigens. Pathogens 2023; 12:pathogens12030374. [PMID: 36986295 PMCID: PMC10056810 DOI: 10.3390/pathogens12030374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/03/2023] Open
Abstract
Anti-tick vaccines development mainly depends on the identification of suitable antigens, which ideally should have different features. These should be key molecules in tick biology, encoded by a single gene, expressed across life stages and tick tissues, capable of inducing B and T cells to promote an immunological response without allergenic, hemolytic, and toxic effects; and should not be homologous to the mammalian host. The discussion regarding this subject and the usefulness of “exposed” and “concealed” antigens was effectively explored in the publication by Nuttall et al. (2006). The present commentary intends to debate the relevance of such study in the field of tick immunological control.
Collapse
Affiliation(s)
- Sandra Antunes
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
- Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
| | - Ana Domingos
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
- Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
2
|
Fisch A, Reynisson B, Benedictus L, Nicastri A, Vasoya D, Morrison I, Buus S, Ferreira BR, Kinney Ferreira de Miranda Santos I, Ternette N, Connelley T, Nielsen M. Integral Use of Immunopeptidomics and Immunoinformatics for the Characterization of Antigen Presentation and Rational Identification of BoLA-DR-Presented Peptides and Epitopes. THE JOURNAL OF IMMUNOLOGY 2021; 206:2489-2497. [PMID: 33789985 DOI: 10.4049/jimmunol.2001409] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/01/2021] [Indexed: 02/04/2023]
Abstract
MHC peptide binding and presentation is the most selective event defining the landscape of T cell epitopes. Consequently, understanding the diversity of MHC alleles in a given population and the parameters that define the set of ligands that can be bound and presented by each of these alleles (the immunopeptidome) has an enormous impact on our capacity to predict and manipulate the potential of protein Ags to elicit functional T cell responses. Liquid chromatography-mass spectrometry analysis of MHC-eluted ligand data has proven to be a powerful technique for identifying such peptidomes, and methods integrating such data for prediction of Ag presentation have reached a high level of accuracy for both MHC class I and class II. In this study, we demonstrate how these techniques and prediction methods can be readily extended to the bovine leukocyte Ag class II DR locus (BoLA-DR). BoLA-DR binding motifs were characterized by eluted ligand data derived from bovine cell lines expressing a range of DRB3 alleles prevalent in Holstein-Friesian populations. The model generated (NetBoLAIIpan, available as a Web server at www.cbs.dtu.dk/services/NetBoLAIIpan) was shown to have unprecedented predictive power to identify known BoLA-DR-restricted CD4 epitopes. In summary, the results demonstrate the power of an integrated approach combining advanced mass spectrometry peptidomics with immunoinformatics for characterization of the BoLA-DR Ag presentation system and provide a prediction tool that can be used to assist in rational evaluation and selection of bovine CD4 T cell epitopes.
Collapse
Affiliation(s)
- Andressa Fisch
- Ribeirão Preto College of Nursing, University of São Paulo, Av Bandeirantes, Ribeirão Preto, Brazil
| | - Birkir Reynisson
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | | | - Annalisa Nicastri
- The Jenner Institute, Nuffield Department of Medicine, Oxford, United Kingdom
| | - Deepali Vasoya
- The Roslin Institute, Edinburgh, Midlothian, United Kingdom
| | - Ivan Morrison
- The Roslin Institute, Edinburgh, Midlothian, United Kingdom
| | - Søren Buus
- Laboratory of Experimental Immunology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Nicola Ternette
- The Jenner Institute, Nuffield Department of Medicine, Oxford, United Kingdom
| | - Tim Connelley
- The Roslin Institute, Edinburgh, Midlothian, United Kingdom
| | - Morten Nielsen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark .,Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Argentina
| |
Collapse
|
3
|
Hennebert E, Maldonado B, Ladurner P, Flammang P, Santos R. Experimental strategies for the identification and characterization of adhesive proteins in animals: a review. Interface Focus 2015; 5:20140064. [PMID: 25657842 PMCID: PMC4275877 DOI: 10.1098/rsfs.2014.0064] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Adhesive secretions occur in both aquatic and terrestrial animals, in which they perform diverse functions. Biological adhesives can therefore be remarkably complex and involve a large range of components with different functions and interactions. However, being mainly protein based, biological adhesives can be characterized by classical molecular methods. This review compiles experimental strategies that were successfully used to identify, characterize and obtain the full-length sequence of adhesive proteins from nine biological models: echinoderms, barnacles, tubeworms, mussels, sticklebacks, slugs, velvet worms, spiders and ticks. A brief description and practical examples are given for a variety of tools used to study adhesive molecules at different levels from genes to secreted proteins. In most studies, proteins, extracted from secreted materials or from adhesive organs, are analysed for the presence of post-translational modifications and submitted to peptide sequencing. The peptide sequences are then used directly for a BLAST search in genomic or transcriptomic databases, or to design degenerate primers to perform RT-PCR, both allowing the recovery of the sequence of the cDNA coding for the investigated protein. These sequences can then be used for functional validation and recombinant production. In recent years, the dual proteomic and transcriptomic approach has emerged as the best way leading to the identification of novel adhesive proteins and retrieval of their complete sequences.
Collapse
Affiliation(s)
- Elise Hennebert
- Biology of Marine Organisms and Biomimetics, Research Institute for Biosciences , University of Mons , 23 Place du Parc, 7000 Mons , Belgium
| | - Barbara Maldonado
- Molecular Biology and Genetic Engineering, GIGA-R , University of Liège , 1 Avenue de l'Hôpital, 4000 Liège , Belgium
| | - Peter Ladurner
- Institute of Zoology and Center of Molecular Bioscience Innsbruck , University of Innsbruck , Technikerstrasse 25, 6020 Innsbruck , Austria
| | - Patrick Flammang
- Biology of Marine Organisms and Biomimetics, Research Institute for Biosciences , University of Mons , 23 Place du Parc, 7000 Mons , Belgium
| | - Romana Santos
- Unidade de Investigação em Ciências Orais e Biomédicas, Faculdade de Medicina Dentária , Universidade de Lisboa, Cidade Universitária , 1649-003 Lisboa , Portugal
| |
Collapse
|
4
|
Jiang X, Gao J, Wang W, Xu M, Li W, Qi M, Yang C, Ji L, Zhang D, Luo J, Yin H. Molecular characterization of an alanine-, proline-, glycine-, threonine-, and serine-rich protein of the hard tick Haemaphysalis qinghaiensis and its effect as a vaccine against tick infestation in sheep. Ticks Tick Borne Dis 2014; 5:14-20. [DOI: 10.1016/j.ttbdis.2013.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Vu Hai V, Almeras L, Audebert S, Pophillat M, Boulanger N, Parola P, Raoult D, Pages F. Identification of salivary antigenic markers discriminating host exposition between two European ticks: Rhipicephalus sanguineus and Dermacentor reticulatus. Comp Immunol Microbiol Infect Dis 2012; 36:39-53. [PMID: 23040662 DOI: 10.1016/j.cimid.2012.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 09/06/2012] [Accepted: 09/12/2012] [Indexed: 10/27/2022]
Abstract
To succeed blood meal, ticks inject salivary proteins to mammalian hosts, eliciting an antibody response against these foreign antigens. Although this immune response has been proposed as a surrogate marker of exposure to tick bites, identification of the corresponding antigens remains elusive. For this aim, a comparison by immunoblots of the kinetic IgG responses to protein salivary gland extracts from two European tick species, Rhipicephalus sanguineus or Dermacentor reticulatus, in rabbits was performed. A singularity in the immune patterns was observed according to rabbit exposure status and depending on the antigen source. Six and five bands were found specifically associated to R. sanguineus and to D. reticulatus exposures, respectively. The identity of these salivary antigenic proteins was determined using an original immunoproteomic approach. The utilization of these tick salivary proteins as biomarker candidates to discriminate R. sanguineus and/or D. reticulatus tick exposure or to develop anti-tick vaccines is discussed.
Collapse
Affiliation(s)
- Vinh Vu Hai
- Unité des Rickettsies, WHO Collaborative Center for Rickettsial and Other Arthropod-Borne Bacterial Diseases, Unité de Recherche des Maladies Infectieuses et Tropicales Emergente, UMR CNRS IRD, IFR, Institut Hospitalier Universitaire Marseille, Faculté de Médecine, Marseille, France.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Francischetti IMB, Sa-Nunes A, Mans BJ, Santos IM, Ribeiro JMC. The role of saliva in tick feeding. FRONT BIOSCI-LANDMRK 2009; 14:2051-88. [PMID: 19273185 PMCID: PMC2785505 DOI: 10.2741/3363] [Citation(s) in RCA: 396] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
When attempting to feed on their hosts, ticks face the problem of host hemostasis (the vertebrate mechanisms that prevent blood loss), inflammation (that can produce itching or pain and thus initiate defensive behavior on their hosts) and adaptive immunity (by way of both cellular and humoral responses). Against these barriers, ticks evolved a complex and sophisticated pharmacological armamentarium, consisting of bioactive lipids and proteins, to assist blood feeding. Recent progress in transcriptome research has uncovered that hard ticks have hundreds of different proteins expressed in their salivary glands, the majority of which have no known function, and include many novel protein families (e.g., their primary structure is unique to ticks). This review will address the vertebrate mechanisms of these barriers as a guide to identify the possible targets of these large numbers of known salivary proteins with unknown function. We additionally provide a supplemental Table that catalogues over 3,500 putative salivary proteins from various tick species, which might assist the scientific community in the process of functional identification of these unique proteins. This supplemental file is accessble fromhttp://exon.niaid.nih.gov/transcriptome/tick_review/Sup-Table-1.xls.gz.
Collapse
Affiliation(s)
- Ivo M B Francischetti
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda MD, USA
| | | | | | | | | |
Collapse
|
7
|
Gallizzi K, Gern L, Richner H. A flea-induced pre-hatching maternal effect modulates tick feeding behaviour on great tit nestlings. Funct Ecol 2007. [DOI: 10.1111/j.1365-2435.2007.01344.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|