1
|
Affiliation(s)
- Marcione B. De Oliveira
- Graduate Program in Zoology, National Museum, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista s/n, São Cristóvão, Rio de Janeiro, RJ, 20940-040, Brazil
| | - Cibele R. Bonvicino
- Graduate Program in Zoology, National Museum, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista s/n, São Cristóvão, Rio de Janeiro, RJ, 20940-040, Brazil
| |
Collapse
|
2
|
Phylogenetic analysis of near full-length sequences of the Desmodus rotundus genetic lineage of rabies virus. INFECTION GENETICS AND EVOLUTION 2020; 80:104179. [PMID: 31917361 DOI: 10.1016/j.meegid.2020.104179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/21/2019] [Accepted: 01/05/2020] [Indexed: 11/23/2022]
Abstract
The World Health Organization (WHO), reports that rabies causes tens of thousands of deaths every year killing humans, non-human primates and other animals. Rabies continues to be a public health issue, despite the existence of effective vaccines. The dogs remain the primary reservoir and transmitter of rabies to humans globally. In the Americas, bats are regarded as the second most common source of rabies virus to humans. The vampire bat Desmodus rotundus has been identified as a natural reservoir of rabies virus (RABV) in this region. The complete genome of the RABV variant maintained by populations of vampire bats D. rotundus has rarely been reported. In this study, we sequenced and analyzed the genome of a RABV variant detected in D. rotundus. The sample, collected from an endemic area in São Paulo State, was phylogenetically compared with the genome of the standard sample for species Rabies virus as well as other samples belonging to terrestrial and bat-associated cycles of rabies transmission, available in GenBank. Distinct patterns linked to the genetic lineage were identified. These data can aid in the understanding of the molecular epidemiology of this virus and the epidemiological importance of this species in the transmission of the RABV.
Collapse
|
3
|
Singh R, Singh KP, Cherian S, Saminathan M, Kapoor S, Manjunatha Reddy GB, Panda S, Dhama K. Rabies - epidemiology, pathogenesis, public health concerns and advances in diagnosis and control: a comprehensive review. Vet Q 2017. [PMID: 28643547 DOI: 10.1080/01652176.2017.1343516] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rabies is a zoonotic, fatal and progressive neurological infection caused by rabies virus of the genus Lyssavirus and family Rhabdoviridae. It affects all warm-blooded animals and the disease is prevalent throughout the world and endemic in many countries except in Islands like Australia and Antarctica. Over 60,000 peoples die every year due to rabies, while approximately 15 million people receive rabies post-exposure prophylaxis (PEP) annually. Bite of rabid animals and saliva of infected host are mainly responsible for transmission and wildlife like raccoons, skunks, bats and foxes are main reservoirs for rabies. The incubation period is highly variable from 2 weeks to 6 years (avg. 2-3 months). Though severe neurologic signs and fatal outcome, neuropathological lesions are relatively mild. Rabies virus exploits various mechanisms to evade the host immune responses. Being a major zoonosis, precise and rapid diagnosis is important for early treatment and effective prevention and control measures. Traditional rapid Seller's staining and histopathological methods are still in use for diagnosis of rabies. Direct immunofluoroscent test (dFAT) is gold standard test and most commonly recommended for diagnosis of rabies in fresh brain tissues of dogs by both OIE and WHO. Mouse inoculation test (MIT) and polymerase chain reaction (PCR) are superior and used for routine diagnosis. Vaccination with live attenuated or inactivated viruses, DNA and recombinant vaccines can be done in endemic areas. This review describes in detail about epidemiology, transmission, pathogenesis, advances in diagnosis, vaccination and therapeutic approaches along with appropriate prevention and control strategies.
Collapse
Affiliation(s)
- Rajendra Singh
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Karam Pal Singh
- b Centre for Animal Disease Research and Diagnosis (CADRAD) , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Susan Cherian
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Mani Saminathan
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Sanjay Kapoor
- c Department of Veterinary Microbiology , LLR University of Veterinary and Animal Sciences , Hisar , Haryana , India
| | - G B Manjunatha Reddy
- d ICAR-National Institute of Veterinary Epidemiology and Disease Informatics , Bengaluru , Karnataka , India
| | - Shibani Panda
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Kuldeep Dhama
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| |
Collapse
|
4
|
Roles of the Rabies Virus Phosphoprotein Isoforms in Pathogenesis. J Virol 2016; 90:8226-37. [PMID: 27384657 DOI: 10.1128/jvi.00809-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/28/2016] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Rabies virus (RABV) P gene mRNA encodes five in-frame start codons, resulting in expression of full-length P protein (P1) and N-terminally truncated P proteins (tPs), designated P2, P3, P4, and P5. Despite the fact that some tPs are known as interferon (IFN) antagonists, the importance of tPs in the pathogenesis of RABV is still unclear. In this study, to examine whether tPs contribute to pathogenesis, we exploited a reverse genetics approach to generate CE(NiP)ΔP2-5, a mutant of pathogenic CE(NiP) in which the P gene was mutated by replacing all of the start codons (AUG) for tPs with AUA. We confirmed that while CE(NiP) expresses detectable levels of P2 and P3, CE(NiP)ΔP2-5 has an impaired ability to express these tPs. After intramuscular inoculation, CE(NiP)ΔP2-5 caused significantly lower morbidity and mortality rates in mice than did CE(NiP), indicating that tPs play a critical role in RABV neuroinvasiveness. Further examinations revealed that this less neuroinvasive phenotype of CE(NiP)ΔP2-5 correlates with its impaired ability to replicate in muscle cells, indicative of the importance of tPs in viral replication in muscle cells. We also demonstrated that CE(NiP)ΔP2-5 infection induced a higher level of Ifn-β gene expression in muscle cells than did CE(NiP) infection, consistent with the results of an IFN-β promoter reporter assay suggesting that all tPs function to antagonize IFN induction in muscle cells. Taken together, our findings strongly suggest that tPs promote viral replication in muscle cells through their IFN antagonist activities and thereby support infection of peripheral nerves. IMPORTANCE Despite the fact that previous studies have demonstrated that P2 and P3 of RABV have IFN antagonist activities, the actual importance of tPs in pathogenesis has remained unclear. Here, we provide the first evidence that tPs contribute to the pathogenesis of RABV, especially its neuroinvasiveness. Our results also show the mechanism underlying the neuroinvasiveness driven by tPs, highlighting the importance of their IFN antagonist activities, which support viral replication in muscle cells.
Collapse
|
5
|
Genetic diversity and molecular evolution of the rabies virus matrix protein gene in China. INFECTION GENETICS AND EVOLUTION 2013; 16:248-53. [PMID: 23453987 DOI: 10.1016/j.meegid.2013.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 11/30/2012] [Accepted: 02/02/2013] [Indexed: 12/23/2022]
Abstract
To investigate the diversity of rabies virus (RABV) matrix protein (M) gene in the current Chinese rabies epidemic, we fully examined M gene of 63 street RABVs (Virus isolated from naturally infected animals), and performed phylogenetic and mutational analysis. Our results indicate that the Chinese RABV M gene is well conserved with 90.6% to 100% amino acid similarity. Analysis of the mutations indicates that the sequences can be divided into four groups with each group defined by distinct substitutions. The PPxY motif and residue E58, which are essential for efficient virus production and pathogenicity, were completely conserved. The estimated mean rate of nucleotide substitution was 4.6×10(-4) substitutions per site per year, and the estimated average time of the most recent common ancestor (TMRCA) was 265 years ago based on the M gene of Chinese street RABVs, which are similar to previously reported values for the glycoprotein (G) and nucleoprotein (N) gene. This indicates that the genomic RNA of RABVs circulating worldwide is stable; G, N and M genes are evolving at a similar rate. This study showed that although the Chinese RABV strains could be divided into distinct clades based on the phylogenetic analysis, their functional domains of M proteins were highly conserved.
Collapse
|
6
|
Albas A, Campos ACDA, Araujo DB, Rodrigues CS, Sodré MM, Durigon EL, Favoretto SR. Molecular characterization of rabies virus isolated from non-haematophagous bats in Brazil. Rev Soc Bras Med Trop 2012; 44:678-83. [PMID: 22231241 DOI: 10.1590/s0037-86822011000600006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 06/17/2011] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Rabies is an important zoonosis that causes thousands of deaths worldwide each year. Although the terrestrial cycle, mainly transmitted by dogs, is controlled in Brazil, the aerial cycle remains a serious public health issue, besides the economic problem. In the aerial cycle, the haematophagous bat Desmodus rotundus is the main source of infection, where several different species of non-haematophagous bats can be infected and can transmit the virus. METHODS The aim of this work was to study the epidemiological pattern of rabies using antigenic characterization with monoclonal antibodies and genetic characterization by reverse-transcriptase polymerase chain reaction followed by sequencing and phylogenetic analysis of non-haematophagous bats' and herbivorous animals' central nervous system samples from the western region of the State of São Paulo, Brazil. RESULTS From 27 samples, 3 antigenic variants were identified: AgV-3, AgV-4, and AgV-6; and from 29 samples, 5 different clusters were identified, all belonging to the rabies virus species. CONCLUSIONS Although only non-haematophagous bats were evaluated in the studied region, the majority of samples were from antigenic and genetic variants related to haematophagous bats Desmodus rotundus. Samples from the same antigenic variant were segregated in more than one genetic cluster. This study demonstrated the diversity of rabies virus genetic lineages presented and circulating in non-haematophagous bats in the studied region.
Collapse
Affiliation(s)
- Avelino Albas
- Pólo da Alta Sorocabana, Agência Paulista de Tecnologia de Agronegócios Presidente Prudente, SP, Brasil
| | | | | | | | | | | | | |
Collapse
|
7
|
Xie T, Yu H, Wu J, Ming P, Huang S, Shen Z, Xu G, Yan J, Yu B, Zhou D. Molecular characterization of the complete genome of a street rabies virus WH11 isolated from donkey in China. Virus Genes 2012; 45:452-62. [PMID: 22836559 DOI: 10.1007/s11262-012-0786-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 07/09/2012] [Indexed: 12/25/2022]
Abstract
The complete genomic sequence of a rabies virus isolate WH11, isolated from brain tissue of a rabid donkey in China, was determined and compared with other rabies viruses. This is the first Chinese street strain which was isolated from donkey and the entire length and organization of the virus was similar to that of other rabies viruses. Multiple alignments of amino acid sequences of the nucleoprotein, phosphoprotein, matrix protein, glycoprotein, and large protein of WH11 with those of other rabies viruses were undertaken to examine the conservative degree of functional regions. Phylogenetic analysis using the complete genomic sequence of WH11 determined that this isolate is most closely related with rabies viruses previously isolated in China and the attenuated Chinese vaccine strain CTN181.
Collapse
Affiliation(s)
- Tingbo Xie
- Center for Rabies Diagnosis, Wuhan Institute of Biological Products, Wuhan, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Whole-genome analysis of a human rabies virus from Sri Lanka. Arch Virol 2011; 156:659-69. [PMID: 21298456 DOI: 10.1007/s00705-010-0905-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 12/21/2010] [Indexed: 10/18/2022]
Abstract
The complete genome sequence of a human rabies virus, strain H-08-1320, from Sri Lanka was determined and compared with other rabies viruses. The size of the genome was 11,926 nt, and it was composed of a 58-nucleotide 3' leader, five protein genes--N (1353 nt), P (894 nt), M (609 nt), G (1575 nt), and L (6387 nt)--and a 70-nt 5' trailer. The intergenic region G-L contained 515 nt. The sizes of the nucleoprotein, phosphoprotein, matrix-protein, glycoprotein and large-protein was 450, 296, 202, 524 and 2,128 residues, respectively. The phosphoprotein and large protein were one amino acid shorter and longer, respectively, than those of most rabies viruses. The glycoprotein of H-08-1320 had a unique amino acid substitution at antigenic site I. Whole-genome phylogenetic analysis showed that strain H-08-1320 formed an independent lineage and did not cluster with rabies viruses from other countries.
Collapse
|
9
|
Mochizuki N, Kobayashi Y, Sato G, Hirano S, Itou T, Ito FH, Sakai T. Determination and molecular analysis of the complete genome sequence of two wild-type rabies viruses isolated from a haematophagous bat and a frugivorous bat in Brazil. J Vet Med Sci 2011; 73:759-66. [PMID: 21301181 DOI: 10.1292/jvms.10-0238] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The complete genome sequences of two Brazilian wild-type rabies viruses (RABV), a BR-DR1 isolate from a haematophagous bat (Desmodus rotundus) and a BR-AL1 isolate from a frugivorous bat (Artibeus lituratus), were determined. The genomes of the BR-DR1 and BR-AL1 had 11,923 and 11,922 nt, respectively, and both encoded the five standard genes of rhabdoviruses. The complete nucleotide sequence identity between the BR-DR1 and BR-AL1 isolates was 97%. The BR-DR1 and BR-AL1 isolates had some conserved functional sites revealed by the fixed isolates, whereas both isolates had unique amino acid substitutions in the antigenic region IV of the nucleocapsid gene. Therefore, it is speculated that both isolates were nearly identical in virologic character. According to our phylogenetic analysis based on the complete genomes, both isolates belonged to genotype 1, and to the previously defined "vampire bat-related RABV lineage" which consisted of mainly D. rotundus- and A. lituratus-isolates; however, a branch pattern with high bootstrap values suggested that BR-DR1 was more closely related to the 9001FRA isolate, which was collected from a dog bitten by a bat in French Guiana, than to BR-AL1. This result suggests that the vampire bat-related RABV lineage includes Brazilian vampire bat and Brazilian frugivorous bat RABV and is further divided into Brazilian vampire bat and Brazilian frugivorous bat RABV sub-lineages. The phylogenetic analysis based on the complete genomes was valuable in discriminating among very closely related isolates.
Collapse
Affiliation(s)
- Nobuyuki Mochizuki
- Nihon University Veterinary Research Center, Fujisawa, Kanagawa 252–0880, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Mochizuki N, Kobayashi Y, Sato G, Itou T, Gomes AAB, Ito FH, Sakai T. Complete genome analysis of a rabies virus isolate from Brazilian wild fox. Arch Virol 2009; 154:1475-88. [DOI: 10.1007/s00705-009-0475-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 07/15/2009] [Indexed: 10/20/2022]
|