1
|
Glass GE, Mérai A, Molnár S, Clayton P. The Use of a Proprietary Near-Infrared Laser to Enhance Wound Healing: A Preliminary Preclinical and Clinical Study. Aesthet Surg J Open Forum 2025; 7:ojaf009. [PMID: 40201332 PMCID: PMC11975535 DOI: 10.1093/asjof/ojaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025] Open
Abstract
Background Nonthermal light energy has been used to enhance wound healing. This is known as photobiomodulation. Although preclinical evidence is largely based on laser light, light-emitting diodes (LEDs) form the mainstay of clinical studies owing to the lack of available lasers for nonclinical use. However, it is speculated the 2 technologies exhibit dissimilar biological responses. Objectives The influence of a new, commercially available near-infrared laser device on the gene expression profile of human skin relative to an equivalent, near-infrared LED device was evaluated. Additionally, the wound healing potential of the device was examined in practice. Methods Defatted human skin was exposed to the laser (3), LED (3), or negative control (3) for 5 days. On Day 6, skin samples were biopsied for ribonucleic acid extraction and gene expression assays run for 107 genes of interest. Twenty patients with chronic wounds were randomized to receive standard wound care ± laser therapy 3 times weekly for 4 weeks, and wounds were analyzed for healing. Results The laser altered expression of 45 genes. Highly up-regulated genes (>5-fold change) included those implicated in wound healing and antiaging, whereas highly down-regulated genes included those implicated in inflammation and extracellular matrix integrity. The LED device altered expression of only 1 gene relative to negative controls. The laser reduced mean wound area by 78% and healed 4 of 10 wounds completely. In contrast, 8 of 10 of those receiving standard care exhibited no change. Conclusions A proprietary near-infrared laser exhibited superior ability to influence gene expression in healthy skin than an equivalent LED device and induced the healing of chronic wounds. Level of Evidence 2 Therapeutic
Collapse
Affiliation(s)
- Graeme E Glass
- Corresponding Author: Dr Graeme E. Glass, C1, 120, 1st Floor OPC, Al-Gharrafa St, Ar-Rayyan, Doha, State of Qatar. E-mail: ; Twitter: @drgraemeglass
| | | | | | | |
Collapse
|
2
|
Truong NCD, Wang X, Liu H. Temporal and spectral analyses of EEG microstate reveals neural effects of transcranial photobiomodulation on the resting brain. Front Neurosci 2023; 17:1247290. [PMID: 37916179 PMCID: PMC10616257 DOI: 10.3389/fnins.2023.1247290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023] Open
Abstract
Introduction The quantification of electroencephalography (EEG) microstates is an effective method for analyzing synchronous neural firing and assessing the temporal dynamics of the resting state of the human brain. Transcranial photobiomodulation (tPBM) is a safe and effective modality to improve human cognition. However, it is unclear how prefrontal tPBM neuromodulates EEG microstates both temporally and spectrally. Methods 64-channel EEG was recorded from 45 healthy subjects in both 8-min active and sham tPBM sessions, using a 1064-nm laser applied to the right forehead of the subjects. After EEG data preprocessing, time-domain EEG microstate analysis was performed to obtain four microstate classes for both tPBM and sham sessions throughout the pre-, during-, and post-stimulation periods, followed by extraction of the respective microstate parameters. Moreover, frequency-domain analysis was performed by combining multivariate empirical mode decomposition with the Hilbert-Huang transform. Results Statistical analyses revealed that tPBM resulted in (1) a significant increase in the occurrence of microstates A and D and a significant decrease in the contribution of microstate C, (2) a substantial increase in the transition probabilities between microstates A and D, and (3) a substantial increase in the alpha power of microstate D. Discussion These findings confirm the neurophysiological effects of tPBM on EEG microstates of the resting brain, particularly in class D, which represents brain activation across the frontal and parietal regions. This study helps to better understand tPBM-induced dynamic alterations in EEG microstates that may be linked to the tPBM mechanism of action for the enhancement of human cognition.
Collapse
Affiliation(s)
| | | | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
3
|
Dehghanpour HR, Parvin P, Ganjali P, Golchini A, Eshghifard H, Heidari O. Evaluation of photobiomodulation effect on cesarean-sectioned wound healing: a clinical study. Lasers Med Sci 2023; 38:171. [PMID: 37526765 DOI: 10.1007/s10103-023-03774-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/05/2023] [Indexed: 08/02/2023]
Abstract
The effects of low-level laser on the wound healing and burn injuries have been previously examined to demonstrate some satisfactory results. Despite there are a few articles available to study photobiomodulation (PBM) effects on the pain relief of cesarean sectioned wound, however no systematic examination has been carried out so far regarding its healing. Here, the aim of this clinical study was to evaluate PBM effect on the cesarean-sectioned wound healing. PBM effects of semiconductor lasers are investigated at 658 and 660 nm with 100, 150 and 350 mW output powers on 40 patients. Due to the global increasing number of cesarean sections, we have decided to investigate the effect of laser as a reliable technique to recover the wounds fast. We considered women as the target group who had their first delivery giving the birth of their children by cesarean section. We selected patients are who treated by laser therapy using indium gallium aluminum phosphide (InGaAlP) semiconductor linear scanning type with beam cross section of 12 cm2 and the output power of 100 mW at 658 nm exposing a therapeutic dose of 2 J/cm2. The purpose is to accelerate the healing process of the wounds after delivery as an intervention group against the people who chose the conventional methods (using ointments, pills, etc.) to heal their cesarean sectioned wounds as the control group. Regarding the wounds of these two groups, the questionnaires were filled by patients to assess the severity of pain from visual analogue scale (VAS) based on the healing of wounds from redness, edema, ecchymosis, discharge, and distance between the two edges of the wound (REEDA) scale in the early hours after surgery and the post-treatment follow-up on the third, seventh, and the tenth days. The data collected by these questionnaires were analyzed using statistical package for social science)SPSS( as a statistical software to give out the comparative histograms. This study reports a clinical examination of PBM under intervention group of 40 patients ranging 18-40 years old with body mass index (BMI) of 29-36, during post-cesarean surgery to elucidate successful healing of the wounds and scars against conventional methods which considered as control group. Comparison of mean REEDA scores on the third day (p = 0.035), seventh day (p = 0.03), and tenth day (p = 0.02) after delivery exhibits that the two groups benefit a statistically significant difference with each other. For instance, the mean wound healing score in the intervention group was almost half of the mean wound healing score on the tenth day in the control group (1.09 ± 0.586 vs. 2.25 ± 0.422). The post-cesarean follow-up indicates that the patients treated by the laser therapy (intervention group) encounter better recovery than the control group.
Collapse
Affiliation(s)
| | - Parviz Parvin
- Physics Department, Amirkabir University of Technology, P.O. Box, Tehran, 15875-4413, Iran
| | - Parvaneh Ganjali
- Department of Physics, Tafresh University, Tafresh, 3951879611, Iran
| | | | | | - Omid Heidari
- Physics Department, Amirkabir University of Technology, P.O. Box, Tehran, 15875-4413, Iran
| |
Collapse
|
4
|
Truong NCD, Wang X, Wanniarachchi H, Liu H. Enhancement of Frequency-Specific Hemodynamic Power and Functional Connectivity by Transcranial Photobiomodulation in Healthy Humans. Front Neurosci 2022; 16:896502. [PMID: 35757526 PMCID: PMC9226485 DOI: 10.3389/fnins.2022.896502] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/09/2022] [Indexed: 12/03/2022] Open
Abstract
Transcranial photobiomodulation (tPBM) has been considered a safe and effective brain stimulation modality being able to enhance cerebral oxygenation and neurocognitive function. To better understand the underlying neurophysiological effects of tPBM in the human brain, we utilized a 111-channel functional near infrared spectroscopy (fNIRS) system to map cerebral hemodynamic responses over the whole head to 8-min tPBM with 1,064-nm laser given on the forehead of 19 healthy participants. Instead of analyzing broad-frequency hemodynamic signals (0–0.2 Hz), we investigated frequency-specific effects of tPBM on three infra-slow oscillation (ISO) components consisting of endogenic, neurogenic, and myogenic vasomotions. Significant changes induced by tPBM in spectral power of oxygenated hemoglobin concentration (Δ[HbO]), functional connectivity (FC), and global network metrics at each of the three ISO frequency bands were identified and mapped topographically for frequency-specific comparisons. Our novel findings revealed that tPBM significantly increased endogenic Δ[HbO] powers over the right frontopolar area near the stimulation site. Also, we demonstrated that tPBM enabled significant enhancements of endogenic and myogenic FC across cortical regions as well as of several global network metrics. These findings were consistent with recent reports and met the expectation that myogenic oscillation is highly associated with endothelial activity, which is stimulated by tPBM-evoked nitric oxide (NO) release.
Collapse
Affiliation(s)
- Nghi Cong Dung Truong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Xinlong Wang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Hashini Wanniarachchi
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
5
|
Liu Z, Liu Q, Guo H, Liang J, Zhang Y. Overview of Physical and Pharmacological Therapy in Enhancing Bone Regeneration Formation During Distraction Osteogenesis. Front Cell Dev Biol 2022; 10:837430. [PMID: 35573673 PMCID: PMC9096102 DOI: 10.3389/fcell.2022.837430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Distraction osteogenesis (DO) is a kind of bone regeneration technology. The principle is to incise the cortical bone and apply continuous and stable distraction force to the fractured end of the cortical bone, thereby promoting the proliferation of osteoblastic cells in the tension microenvironment and stimulating new bone formation. However, the long consolidation course of DO presumably lead to several complications such as infection, fracture, scar formation, delayed union and malunion. Therefore, it is of clinical significance to reduce the long treatment duration. The current treatment strategy to promote osteogenesis in DO includes gene, growth factor, stem-cell, physical and pharmacological therapies. Among these methods, pharmacological and physical therapies are considered as safe, economical, convenience and effective. Recently, several physical and pharmacological therapies have been demonstrated with a decent ability to enhance bone regeneration during DO. In this review, we have comprehensively summarized the latest evidence for physical (Photonic, Waves, Gas, Mechanical, Electrical and Electromagnetic stimulation) and pharmacological (Bisphosphonates, Hormone, Metal compounds, Biologics, Chinese medicine, etc) therapies in DO. These evidences will bring novel and significant information for the bone healing during DO in the future.
Collapse
Affiliation(s)
- Ze Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbin Guo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jieyu Liang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Zhang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Dhlamini T, Houreld NN. Clinical Effect of Photobiomodulation on Wound Healing of Diabetic Foot Ulcers: Does Skin Color Needs to Be Considered? J Diabetes Res 2022; 2022:3312840. [PMID: 36573132 PMCID: PMC9789897 DOI: 10.1155/2022/3312840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/15/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Diabetic foot ulcers (DFUs) are one of the most common complications of diabetes. DFUs impede patients' quality of life and are known to be unresponsive to conventional therapy. Photobiomodulation (PBM) is a pain-free, noninvasive treatment method that has been shown to promote chronic wound healing and has been successfully used for the treatment of DFUs. Since skin tone and color can affect the way light interacts with tissue, studies should take this into consideration when determining protocols for the use of PBM. This review is aimed at critically evaluating data of existing studies conducted to evaluate the clinical effect of PBM on DFUs, taking skin color into consideration. A literature search was conducted and resulted in articles on cell studies, animal studies, and clinical trials. Only 13 clinical trials and 2 clinical case studies were adopted and used in this review. All the clinical trials adopted for this review show evidence that PBM together with conventional treatment results in an increased healing rate of DFUs; however, only one study adjusted their protocol according to skin color. There are not enough studies conducted on people of color to determine the safety and efficacy of PBM therapy in such ethnic groups. Future randomized, placebo-controlled clinical trials are necessary on PBM and DFUs and should take skin color into consideration.
Collapse
Affiliation(s)
- Thabo Dhlamini
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, South Africa 2028
| | - Nicolette Nadene Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, South Africa 2028
| |
Collapse
|
7
|
Arjmand B, Khodadost M, Jahani Sherafat S, Rezaei Tavirani M, Ahmadi N, Hamzeloo Moghadam M, Okhovatian F, Rezaei Tavirani S, Rostami-Nejad M. Low-Level Laser Therapy: Potential and Complications. J Lasers Med Sci 2021; 12:e42. [PMID: 34733765 DOI: 10.34172/jlms.2021.42] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/03/2021] [Indexed: 12/26/2022]
Abstract
Introduction: Laser therapy has attracted experts' attention in medical sciences. Many benefits of laser therapy are presented besides some complications. In the present study, it is tried to present a new perspective of laser therapy in the various fields of medicine. Methods: Laser therapy-related articles which are combined with regenerative medicine, cosmetic, dentistry, neurodegenerative diseases, kidney, bone fracture, and vaginal function in the English language were searched through the google scholar search engine in the range of 2000-2021. After title screening, the abstracts were evaluated to access the full texts. Results: Basic concepts and various kinds of lasers which are applied in medicine were explained. Applications of laser therapy in various fields of medicine such as pain reduction, wound healing, regenerative medicine, dentistry, and several other body organs were highlighted and some complications were pointed. Conclusion: High potential of laser therapy for application in medicine implies a reconsideration of the laser properties and also styles of laser applications to improve the treatment and prevention of its side effects.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Khodadost
- School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Jahani Sherafat
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei Tavirani
- Proteomics research center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nayebali Ahmadi
- Proteomics research center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Hamzeloo Moghadam
- Traditional Medicine and Materia Medica Research Center, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshad Okhovatian
- Physiotherapy Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Rezaei Tavirani
- Proteomics research center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Karkada G, Maiya GA, Arany P, Rao M, Adiga S, Kamath SU. Effect of Photobiomodulation Therapy on Oxidative Stress Markers in Healing Dynamics of Diabetic Neuropathic Wounds in Wistar Rats. Cell Biochem Biophys 2021; 80:151-160. [PMID: 34331219 PMCID: PMC8881248 DOI: 10.1007/s12013-021-01021-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2021] [Indexed: 12/21/2022]
Abstract
Background Prolonged and overlapping phases of wound healing in diabetes are mainly due to the redox imbalance resulting in the chronicity of the wound. Photobiomodulation therapy works on the principle of absorption of photon energy and its transduction into a biological response in the living tissue. It alleviates the cellular responses, thereby improving the mechanism of wound healing in diabetes. Objective To find out the effect of photobiomodulation therapy of dosage 4 J/cm2 in the healing dynamics of diabetic neuropathic wounds in Wistar rats and its relation with oxidative stress markers. Methodology Diabetes was induced using Streptozotocin of 60 mg/kg of body weight to eighteen female Wistar rats. Neuropathy was induced by the sciatic nerve crush injury followed by an excisional wound of 2 cm2 on the back of the animal. Experimental group animals were treated with dosage 4 J/cm2 of wavelength 655 and 808 nm, and control group animals were kept unirradiated. The biomechanical, histopathological, and biochemical changes were analysed in both groups. Results There was a reduction in mean wound healing time and an increased rate of wound contraction in the experimental group animals compared to its control group. The experimental group showed improved redox status, and histopathological findings revealed better proliferative cells, keratinisation, and epithelialization than un-irradiated controls. Conclusions Photobiomodulation therapy of dosage 4 J/cm2 enhanced the overall wound healing dynamics of the diabetes-induced neuropathic wound and optimised the oxidative status of the wound, thereby facilitating a faster healing process.
Collapse
Affiliation(s)
- Gagana Karkada
- Scholar, Centre for Diabetic Foot Care and Research (CDFCR), Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - G Arun Maiya
- Chief-Centre for Diabetic Foot Care and Research (CDFCR), Professor-Department of Physiotherapy, Dean-Manipal College of Health Professions (MCHP), Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Praveen Arany
- Department of Oral Biology School of Dental Medicine, Engineering & Applied Sciences, University at Buffalo., 3435 Main Street, B36A, Foster Hall, Buffalo, NY, 14214-8031, USA
| | - Mohandas Rao
- Head of the Department-Department of Anatomy, Melaka Manipal Medical College-Manipal Campus, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shalini Adiga
- Head of the Department, Department of Pharmacology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shobha Ullas Kamath
- Department of Biochemistry, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
9
|
Glass GE. Photobiomodulation: The Clinical Applications of Low-Level Light Therapy. Aesthet Surg J 2021; 41:723-738. [PMID: 33471046 DOI: 10.1093/asj/sjab025] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Low-level light therapy (LLLT) is a recent addition to the pantheon of light-based therapeutic interventions. The absorption of red/near-infrared light energy, a process termed "photobiomodulation," enhances mitochondrial ATP production, cell signaling, and growth factor synthesis, and attenuates oxidative stress. Photobiomodulation is now highly commercialized with devices marketed directly to the consumer. In the gray area between the commercial and therapeutic sectors, harnessing the clinical potential in reproducible and scientifically measurable ways remains challenging. OBJECTIVES The aim of this article was to summarize the clinical evidence for photobiomodulation and discuss the regulatory framework for this therapy. METHODS A review of the clinical literature pertaining to the use of LLLT for skin rejuvenation (facial rhytids and dyschromias), acne vulgaris, wound healing, body contouring, and androgenic alopecia was performed. RESULTS A reasonable body of clinical trial evidence exists to support the role of low-energy red/near-infrared light as a safe and effective method of skin rejuvenation, treatment of acne vulgaris and alopecia, and, especially, body contouring. Methodologic flaws, small patient cohorts, and industry funding mean there is ample scope to improve the quality of evidence. It remains unclear if light-emitting diode sources induce physiologic effects of compararable nature and magnitude to those of the laser-based systems used in most of the higher-quality studies. CONCLUSIONS LLLT is here to stay. However, its ubiquity and commercial success have outpaced empirical approaches on which solid clinical evidence is established. Thus, the challenge is to prove its therapeutic utility in retrospect. Well-designed, adequately powered, independent clinical trials will help us answer some of the unresolved questions and enable the potential of this therapy to be realized.
Collapse
|
10
|
de Castro JR, da Silva Pereira F, Chen L, Arana-Chavez VE, Ballester RY, DiPietro LA, Simões A. Improvement of full-thickness rat skin wounds by photobiomodulation therapy (PBMT): A dosimetric study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2020; 206:111850. [PMID: 32203726 DOI: 10.1016/j.jphotobiol.2020.111850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/06/2020] [Accepted: 03/04/2020] [Indexed: 11/19/2022]
Abstract
Basic dosimetric studies are necessary to support the use of photobiomodulation therapy (PBMT), since the great variety of laser parameters that are reported in the literature have created an obstacle to identifying reproducible results. Thus, the present study evaluates the process of tissue repair after the photobiomodulation therapy, taking into consideration the dose, frequency and the mode of energy delivery used. For this, 6 mm diameter wounds were created on dorsal skin of Wistar rats, and the animals were divided in control and irradiated groups, where L1 and L4 (irradiated with 1 point of 10 J/cm2), L2 and L5 (5 points of 10 J/cm2), L3 and L6 (1 point of 50 J/cm2), respectively for one or multiple days of irradiations. A diode laser, λ 660 nm, 40 mW of power and 0.028 cm2 of spot area was used. Our data showed that the group receiving multiple treatments over the first week post wounding, applied at 10 J/cm2 at each of 5 points on and around the wound (group L5) presented the best improvement of wound closure, higher cytokeratin 10, lower macrophage infiltration, and greater tissue resistance to rupture. We conclude that PBMT improves the skin wound healing process, and the outcomes were directly related to the chosen laser parameters and irradiation mode.
Collapse
Affiliation(s)
- Juliana Rodrigues de Castro
- Laboratory of Oral Biology, Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, 05508-000, Brazil
| | - Filipi da Silva Pereira
- Laboratory of Oral Biology, Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, 05508-000, Brazil
| | - Lin Chen
- Center for Wound Healing & Tissue Regeneration, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, USA
| | - Victor Elias Arana-Chavez
- Laboratory of Oral Biology, Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, 05508-000, Brazil
| | - Rafael Yagüe Ballester
- Laboratory of Oral Biology, Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, 05508-000, Brazil
| | - Luisa A DiPietro
- Center for Wound Healing & Tissue Regeneration, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, USA
| | - Alyne Simões
- Laboratory of Oral Biology, Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, 05508-000, Brazil.
| |
Collapse
|
11
|
Wound Photobiomodulation Treatment Outcomes in Animal Models. J Vet Med 2019; 2019:6320515. [PMID: 31467931 PMCID: PMC6699315 DOI: 10.1155/2019/6320515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/02/2019] [Accepted: 07/11/2019] [Indexed: 12/17/2022] Open
Abstract
The possibilities that photobiomodulation has brought on to the medical field are ever expanding and the scope it has reached is infinite. Determining how this relatively new treatment technique can be incorporated into the veterinary medical field is of interest to many medical professionals. In this review, we examine the treatment outcomes of low-level-laser therapy (LLLT) in different animal models to pinpoint any similarities between the studies. A search was conducted to identify LLLT studies using different animal models with an open or closed wound. The studies were compared to identify the laser parameters that resulted in positive treatment outcomes. The overall result of the studies examined indicated that daily laser exposure at a wavelength of a 600 or 800 nm range was the most beneficial across the rodent studies regardless of health status or wound type. More studies on rabbit, canine, and equine models are needed to explain the inconsistent results reviewed and find the correct treatment parameters for these species. Further research involving LLLT studies that focus on different factors including health status, treatment interval, wavelength, and energy density is needed to help validate our knowledge about the efficacy of using photobiomodulation in the veterinary medical field.
Collapse
|
12
|
Wei J, Meng L, Hou X, Qu C, Wang B, Xin Y, Jiang X. Radiation-induced skin reactions: mechanism and treatment. Cancer Manag Res 2018; 11:167-177. [PMID: 30613164 PMCID: PMC6306060 DOI: 10.2147/cmar.s188655] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Radiotherapy (RT) is a major treatment for malignant tumors. The latest data show that >70% of patients with malignant tumors need RT at different periods. Skin changes can be experienced by up to 95% of patients who underwent RT. Inflammation and oxidative stress (OS) have been shown to be generally associated with radiation-induced skin reactions (RISRs). Inflammatory response and OS interact and promote each other during RISRs. Severe skin reactions often have a great impact on the progress of RT. The treatment of RISRs is particularly critical because advanced RT technology can also lead to skin reactions. RISRs are classified into acute and chronic reactions. The treatment methods for acute RISRs include steroid treatment, creams, ointments, and hydrocolloid dressings, depending on the reaction grading. Chronic RISRs includes chronic ulcerations, telangiectasias, and fibrosis of the skin, and advanced treatments such as mesenchymal stem cells, hyperbaric oxygen therapy, superoxide dismutase, and low-intensity laser therapy can be considered. Here, we review and summarize the important mechanisms that cause RISRs as well as the standard and advanced treatments for RISRs.
Collapse
Affiliation(s)
- Jinlong Wei
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China,
| | - Lingbin Meng
- Department of Internal Medicine, Florida Hospital, Orlando, FL 32803, USA
| | - Xue Hou
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China,
| | - Chao Qu
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China,
| | - Bin Wang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China,
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China,
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China,
| |
Collapse
|
13
|
Allameh M, Khalesi S, Khozeimeh F, Faghihian E. Comparative Evaluation of the Efficacy of Laser Therapy and Fibroblastic Growth Factor Injection on Mucosal Wound Healing in Rat Experimental Model. J Lasers Med Sci 2018; 9:194-199. [PMID: 30809331 DOI: 10.15171/jlms.2018.35] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction: The aim of the present study was to compare the effects of laser and basic fibroblastic growth factor (bFGF) treatment on operative wound healing in a rat model. Methods: Sixty-six male Wistar rats were employed in this study. A 10-mm surgical wound was created on the buccal mucosa of each rat, under anesthesia, and then the rats were divided into 3 groups of 22: (1) GF group (received subcutaneous injection of bFGF), (2) laser group (treated with low-level laser irradiation), and (3) control group (received no treatment). On day 5, half of the rats in each group and on day 10 the other half, were sacrificed. Afterward, samples were taken from rats' buccal mucosa for histological assay and scoring. The data were analyzed using MannWhitney test (α =5%). Results: On day 5 there was not any significant difference between GF and control groups; however, the laser group showed clinically delayed wound coverage, compared to other groups (P<0.05). On day 10, histological examination demonstrated marked vascular granulation tissue ( GT) in GF group. Collagen production was significantly prominent in laser group compared to GF treated samples (P=0.004). Inflammation of GT in GF and laser groups was significantly less than that in control samples (P=0.005 and P=0.001, respectively). Conclusion: The components of wound matrix induced by GF and laser treatment were significantly different. Although bFGF or laser treatment of oral wounds, under the conditions of the present study, did not accelerate wound healing, they showed some other notable effects on the quality of healing.
Collapse
Affiliation(s)
- Maryam Allameh
- Dental Research Center, Department of Oral Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeedeh Khalesi
- Dental Material Research Center, Department of Oral and Maxillofacial Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Faezeh Khozeimeh
- Dental Research Center, Department of Oral Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
14
|
Should open excisions and sutured incisions be treated differently? A review and meta-analysis of animal wound models following low-level laser therapy. Lasers Med Sci 2018; 33:1351-1362. [PMID: 29603108 DOI: 10.1007/s10103-018-2496-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/23/2018] [Indexed: 12/20/2022]
Abstract
Although low-level laser therapy (LLLT) was discovered already in the 1960s of the twentieth century, it took almost 40 years to be widely used in clinical dermatology/surgery. It has been demonstrated that LLLT is able to increase collagen production/wound stiffness and/or improve wound contraction. In this review, we investigated whether open and sutured wounds should be treated with different LLLT parameters. A PubMed search was performed to identify controlled studies with LLLT applied to wounded animals (sutured incisions-tensile strength measurement and open excisions-area measurement). Final score random effects meta-analyses were conducted. Nineteen studies were included. The overall result of the tensile strength analysis (eight studies) was significantly in favor of LLLT (SMD = 1.06, 95% CI 0.66-1.46), and better results were seen with 30-79 mW/cm2 infrared laser (SMD = 1.44, 95% CI 0.67-2.21) and 139-281 mW/cm2 red laser (SMD = 1.52, 95% CI 0.54-2.49). The overall result of the wound contraction analysis (11 studies) was significantly in favor of LLLT (SMD = 0.99, 95% CI 0.38-1.59), and the best results were seen with 53-300 mW/cm2 infrared laser (SMD = 1.18, 95% CI 0.41-1.94) and 25-90 mW/cm2 red laser (SMD = 1.6, 95% CI 0.27-2.93). Whereas 1-15 mW/cm2 red laser had a moderately positive effect on sutured wounds, 2-4 mW/cm2 red laser did not accelerate healing of open wounds. LLLT appears effective in the treatment of sutured and open wounds. Statistical heterogeneity indicates that the tensile strength development of sutured wounds is more dependent on laser power density compared to the contraction rate of open wounds.
Collapse
|
15
|
Suzuki R, Takakuda K. Wound healing efficacy of a 660-nm diode laser in a rat incisional wound model. Lasers Med Sci 2016; 31:1683-1689. [PMID: 27495128 DOI: 10.1007/s10103-016-2038-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/25/2016] [Indexed: 12/11/2022]
Abstract
This study aimed to elucidate the optimum usage parameters of low reactive-level laser therapy (LLLT) in a rat incisional wound model. In Sprague-Dawley rats, surgical wounds of 15-mm length were made in the dorsal thoracic region. They were divided into groups to receive 660-nm diode laser irradiation 24 h after surgery at an energy density of 0 (control), 1, 5, or 10 J/cm2. Tissue sections collected on postoperative day 3 were stained with hematoxylin-eosin and an antibody for ED1 to determine the number of macrophages around the wound. Samples collected on day 7 were stained with hematoxylin-eosin and observed via polarized light microscopy to measure the area occupied by collagen fibers around the wound; day 7 skin specimens were also subjected to mechanical testing to evaluate tensile strength. On postoperative day 3, the numbers of macrophages around the wound were significantly lower in the groups receiving 1 and 5 J/cm2 irradiation, compared to the control and 10 J/cm2 irradiation groups (p < 0.01). The area occupied by collagen fibers in day 7 was largest in 5 J/cm2 group, followed by 1 J/cm2 group, although this difference was not significant. The day 7 tensile test demonstrated significantly greater rupture strength in healing tissues from 1 and 5 J/cm2 irradiation groups, compared to the control group (p < 0.05). Thus, LLLT with a 660-nm diode laser with energy density of 1 and 5 J/cm2 enhanced wound healing in a rat incisional wound model. However, a higher radiation energy density yielded no significant enhancement.
Collapse
Affiliation(s)
- Ryoichi Suzuki
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Kazuo Takakuda
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan.
| |
Collapse
|
16
|
Bidar M, Moushekhian S, Gharechahi M, Talati A, Ahrari F, Bojarpour M. The Effect of Low Level Laser Therapy on Direct Pulp Capping in Dogs. J Lasers Med Sci 2016; 7:177-183. [PMID: 28144439 DOI: 10.15171/jlms.2016.31] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Introduction: The aim of this study was to determine the histologic effect of low level laser therapy (LLLT) with or without the use of mineral trioxide aggregate (MTA) on exposed pulp tissues of dogs. Methods: Twenty-five premolar teeth in three healthy mature dogs were randomly divided into five groups. In group 1, the pulp tissue was capped with MTA. In groups 2 and 3, before capping with MTA, the exposure site was irradiated by low power lasers at 630 nm (20 mW, 150 seconds, 7.5 J/cm2) and 810 nm (peak power 80 W, average power 50 mW, 1500 Hz, 50 seconds, 6.25 J/cm2) wavelengths, respectively. In groups 4 and 5, the exposure site was irradiated similar to that described in groups 2 and 3, but the pulp tissue was covered by gold foil instead of MTA. After 2 months, the animals were sacrificed and the samples were prepared for histologic evaluation. Results: There were differences in pulpal response and dentinal barrier formation among the study groups. The morphology of pulpal tissue and the integrity of dentinal barrier and formation of odontoblastic layer were more favorable in the first three groups. The occurrence of extensive and intense inflammation and necrosis was more frequent in groups 4 and 5. Conclusion: Under the conditions used in this study, the presence of MTA as a pulp capping material was more important than laser therapy in the success of direct pulp capping (DPC) treatment. MTA proved to be an effective material either alone or in combination with laser irradiation in vital pulp therapy.
Collapse
Affiliation(s)
- Maryam Bidar
- Dental Research Center, Department of Endodontics, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Siavash Moushekhian
- Dental Research Center, Department of Endodontics, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Gharechahi
- Dental Materials Research Center, Department of Endodontics, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Talati
- Dental Research Center, Department of Endodontics, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Ahrari
- Laser Research Center, Department of Orthodonthics, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
17
|
Ranjbar R, Takhtfooladi MA. The effects of low level laser therapy on Staphylococcus aureus infected third-degree burns in diabetic rats. Acta Cir Bras 2016; 31:250-5. [DOI: 10.1590/s0102-865020160040000005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/15/2016] [Indexed: 11/22/2022] Open
Affiliation(s)
- Reza Ranjbar
- Baqiyatallah University of Medical Sciences, Iran
| | | |
Collapse
|
18
|
Silveira PCL, Scheffer DDL, Glaser V, Remor AP, Pinho RA, Aguiar Junior AS, Latini A. Low-level laser therapy attenuates the acute inflammatory response induced by muscle traumatic injury. Free Radic Res 2016; 50:503-13. [PMID: 26983894 DOI: 10.3109/10715762.2016.1147649] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The purpose of this work was to investigate the effect of early and long-term low-level laser therapy (LLLT) on oxidative stress and inflammatory biomarkers after acute-traumatic muscle injury in Wistar rats. Animals were randomly divided into the following four groups: control group (CG), muscle injury group (IG), CG + LLLT, and IG + LLLT: laser treatment with doses of 3 and 5 J/cm(2). Muscle traumatic injury was induced by a single-impact blunt trauma in the rat gastrocnemius. Irradiation for 3 or 5 J/cm(2) was initiated 2, 12, and 24 h after muscle trauma induction, and the treatment was continued for five consecutive days. All the oxidant markers investigated. namely thiobarbituric acid-reactive substance, carbonyl, superoxide dismutase, glutathione peroxidase, and catalase, were increased as soon as 2 h after muscle injury and remained increased up to 24 h. These alterations were prevented by LLLT at a 3 J/cm(2) dose given 2 h after the trauma. Similarly, LLLT prevented the trauma-induced proinflammatory state characterized by IL-6 and IL-10. In parallel, trauma-induced reduction in BDNF and VEGF, vascular remodeling and fiber-proliferating markers, was prevented by laser irradiation. In order to test whether the preventive effect of LLLT was also reflected in muscle functionality, we tested the locomotor activity, by measuring distance traveled and the number of rearings in the open field test. LLLT was effective in recovering the normal locomotion, indicating that the irradiation induced biostimulatory effects that accelerated or resolved the acute inflammatory response as well as the oxidant state elicited by the muscle trauma.
Collapse
Affiliation(s)
- Paulo Cesar Lock Silveira
- a Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica , Universidade Federal de Santa Catarina , Florianópolis , Brazil ;,b Laboratório de Fisiologia e Bioquímica do Exercício - LaFiBe , Universidade do Extremo Sul Catarinense , Criciúma , Brazil
| | - Debora da Luz Scheffer
- a Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica , Universidade Federal de Santa Catarina , Florianópolis , Brazil
| | - Viviane Glaser
- a Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica , Universidade Federal de Santa Catarina , Florianópolis , Brazil
| | - Aline Pertile Remor
- a Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica , Universidade Federal de Santa Catarina , Florianópolis , Brazil
| | - Ricardo Aurino Pinho
- b Laboratório de Fisiologia e Bioquímica do Exercício - LaFiBe , Universidade do Extremo Sul Catarinense , Criciúma , Brazil
| | - Aderbal Silva Aguiar Junior
- a Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica , Universidade Federal de Santa Catarina , Florianópolis , Brazil
| | - Alexandra Latini
- a Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica , Universidade Federal de Santa Catarina , Florianópolis , Brazil
| |
Collapse
|
19
|
Calisto FCFDS, Calisto SLDS, Souza APD, França CM, Ferreira APDL, Moreira MB. Use of low-power laser to assist the healing of traumatic wounds in rats. Acta Cir Bras 2015; 30:204-8. [PMID: 25790009 DOI: 10.1590/s0102-865020150030000007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/18/2015] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To investigate the morphological aspects of the healing of traumatic wounds in rats using low-power laser. METHODS Twenty four non isogenic, young adult male Wistar rats (Rattus norvegicus) weighing between 200 and 300 g was used. The animals were randomly distributed into two groups: Control (GC) and Laser (GL), with 12 animals each. After shaving, anesthesia was performed in the dorsal region and then a surgical procedure using a scalpel was carried out to make the traumatic wound. GL received five sessions of laser therapy in consecutive days using the following laser parameters: wavelength 660 nm, power 100 mW, dose 10 J/cm2. The wounds were evaluated through measurement of the area and depth of the wound (MW) and histological analysis (HA). RESULTS When comparing the GC with the GL in MW there was a difference in area (p<0.001) and depth (p=0.003) measurement of the wounds in GL. The laser group presented more epithelization than GC (p=0.03). The other histological parameters were similar. CONCLUSION The healing of wounds in rats was improved with the use of the laser.
Collapse
Affiliation(s)
| | | | | | | | | | - Márcia Bento Moreira
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, UNIVASF, Petrolina, PE, Brazil
| |
Collapse
|
20
|
Chaves MEDA, Araújo ARD, Piancastelli ACC, Pinotti M. Effects of low-power light therapy on wound healing: LASER x LED. An Bras Dermatol 2014; 89:616-23. [PMID: 25054749 PMCID: PMC4148276 DOI: 10.1590/abd1806-4841.20142519] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 07/29/2013] [Indexed: 12/28/2022] Open
Abstract
Several studies demonstrate the benefits of low-power light therapy on wound
healing. However, the use of LED as a therapeutic resource remains
controversial. There are questions regarding the equality or not of biological
effects promoted by LED and LASER. One objective of this review was to determine
the biological effects that support the use of LED on wound healing. Another
objective was to identify LED´s parameters for the treatment of wounds. The
biological effects and parameters of LED will be compared to those of LASER.
Literature was obtained from online databases such as Medline, PubMed, Science
Direct and Scielo. The search was restricted to studies published in English and
Portuguese from 1992 to 2012. Sixty-eight studies in vitro and in animals were
analyzed. LED and LASER promote similar biological effects, such as decrease of
inflammatory cells, increased fibroblast proliferation, stimulation of
angiogenesis, granulation tissue formation and increased synthesis of collagen.
The irradiation parameters are also similar between LED and LASER. The
biological effects are dependent on irradiation parameters, mainly wavelength
and dose. This review elucidates the importance of defining parameters for the
use of light devices.
Collapse
Affiliation(s)
| | | | | | - Marcos Pinotti
- Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
21
|
Effect of equal daily doses achieved by different power densities of low-level laser therapy at 635 nm on open skin wound healing in normal and diabetic rats. BIOMED RESEARCH INTERNATIONAL 2014; 2014:269253. [PMID: 24551842 PMCID: PMC3914322 DOI: 10.1155/2014/269253] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/14/2013] [Accepted: 12/14/2013] [Indexed: 01/29/2023]
Abstract
BACKGROUND AND OBJECTIVE Despite the fact that the molecular mechanism of low-level laser therapy (LLLT) is not yet known, the exploitation of phototherapy in clinical medicine and surgery is of great interest. The present study investigates the effects of LLLT on open skin wound healing in normal and diabetic rats. MATERIALS AND METHODS Four round full-thickness skin wounds on dorsum were performed in male adult nondiabetic (n = 24) and diabetic (n = 24) Sprague-Dawley rats. AlGaInP (635 nm, wavelength; 5 J/cm(2), daily dose) was used to deliver power densities of 1, 5, and 15 mW/cm(2) three times daily until euthanasia. RESULTS PMNL infiltration was lower in the irradiated groups (15 mW/cm(2)). The synthesis and organisation of collagen fibres were consecutively enhanced in the 5 mW/cm(2) and 15 mW/cm(2) groups compared to the others in nondiabetic rats. In the diabetic group the only significant difference was recorded in the ratio PMNL/Ma at 15 mW/cm(2). A significant difference in the number of newly formed capillaries in the irradiated group (5, 15 mW/cm(2)) was recorded on day six after injury compared to the control group. CONCLUSION LLLT confers a protective effect against excessive inflammatory tissue response; it stimulates neovascularization and the early formation of collagen fibres.
Collapse
|
22
|
Irradiation with a low-level diode laser induces the developmental endothelial locus-1 gene and reduces proinflammatory cytokines in epithelial cells. Lasers Med Sci 2013; 29:987-94. [PMID: 24197516 DOI: 10.1007/s10103-013-1439-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 09/16/2013] [Indexed: 10/26/2022]
Abstract
We demonstrated previously that low-level diode laser irradiation with an indocyanine green-loaded nanosphere coated with chitosan (ICG-Nano/c) had an antimicrobial effect, and thus could be used for periodontal antimicrobial photodynamic therapy (aPDT). Since little is known about the effects of aPDT on periodontal tissue, we here investigated the effect of low-level laser irradiation, with and without ICG-Nano/c, on cultured epithelial cells. Human oral epithelial cells were irradiated in a repeated pulse mode (duty cycle, 10 %; pulse width, 100 ms; peak power output, 5 W). The expression of the developmental endothelial locus 1 (Del-1), interleukin-6 (IL-6), IL-8, and the intercellular adhesion molecule-1 (ICAM-1) were evaluated in Ca9-22 cells stimulated by laser irradiation and Escherichia coli-derived lipopolysaccharide (LPS). A wound healing assay was carried out on SCC-25 cells irradiated by diode laser with or without ICG-Nano/c. The mRNA expression of Del-1, which is known to have anti-inflammatory activity, was significantly upregulated by laser irradiation (p < 0.01). Concurrently, LPS-induced IL-6 and IL-8 expression was significantly suppressed in the LPS + laser group (p < 0.01). ICAM-1 expression was significantly higher in the LPS + laser group than in the LPS only or control groups. Finally, compared with the control, the migration of epithelial cells was significantly increased by diode laser irradiation with or without ICG-Nano/c. These results suggest that, in addition to its antimicrobial effect, low-level diode laser irradiation, with or without ICG-Nano/c, can suppress excessive inflammatory responses via a mechanism involving Del-1, and assists in wound healing.
Collapse
|
23
|
Assis GM, Moser ADDL. Laserterapia em úlceras por pressão: limitações para avaliação de resposta em pessoas com lesão medular. TEXTO & CONTEXTO ENFERMAGEM 2013. [DOI: 10.1590/s0104-07072013000300035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A laserterapia é efetiva na aceleração da cicatrização de feridas, porém faltam evidências quanto sua utilização em úlceras por pressão e estudos de tratamento em pessoas com lesão medular em atendimento ambulatorial. O estudo teve como objetivo relatar as limitações encontradas na implementação de um programa de laserterapia no tratamento de úlceras por pressão, subsidiando uma reflexão sobre abordagens desta natureza. Trata-se de pesquisa exploratório-descritiva. Seis sujeitos com lesão medular, de dois centros de reabilitação, foram acompanhados em dois atendimentos semanais por oito semanas, recebendo irradiação laser em uma lesão, tendo outra como experimental. As principais limitações observadas foram dificuldade no seguimento da orientação de push-up e comparecimento às consultas. Acredita-se que tais limitações estejam relacionadas a falhas no processo de orientação quanto à prevenção destas lesões e à alteração na sensibilidade local.
Collapse
|
24
|
Effects of low-power LED and therapeutic ultrasound in the tissue healing and inflammation in a tendinitis experimental model in rats. Lasers Med Sci 2013; 29:301-11. [PMID: 23660737 DOI: 10.1007/s10103-013-1327-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 04/15/2013] [Indexed: 10/26/2022]
Abstract
This work evaluated the anti-inflammatory response of low-power light-emitting diode (LED) and ultrasound (US) therapies and the quality and rapidness of tendon repair in an experimental model of tendinitis, employing histomorphometry and Raman spectroscopy. Tendinitis was induced by collagenase into the right tendon of 35 male Wistar rats with an average weight of 230 g. The animals were randomly separated into seven groups of five animals each: tendinitis without treatment-control (TD7 and TD14, where 1 and 2 indicated sacrifice on the 7th and 14th day, respectively), tendinitis submitted to US therapy (US7 and US14) and tendinitis submitted to LED therapy (LED7 and LED14). Contralateral tendons of the TD group at the 14th day were used as the healthy group (H). US treatment was applied in pulsed mode at 10 %, 1 MHz frequency, 0.5 W/cm(2), 120 s. LED therapy parameters were 4 J/cm(2), 120 s, daily dose at the same time and same point. Sacrifice was performed on the 7th or 14th day. Histomorphometric analysis showed lower number of fibroblasts on the 14th day of therapy for the US-treated group, compared to the TD and LED, indicating lower tissue inflammation. Raman showed that the LED group had an increase in the amount of collagen I and III from the 7th to the 14th day, which would indicate more organized fibers and a better quality of the healing, and US showed lower collagen I synthesis in the 14th day compared to H, indicating a lower tissue reorganization.
Collapse
|
25
|
Potentiated anti-inflammatory effect of combined 780 nm and 660 nm low level laser therapy on the experimental laryngitis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 121:86-93. [PMID: 23524249 DOI: 10.1016/j.jphotobiol.2013.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 02/06/2013] [Accepted: 02/08/2013] [Indexed: 12/31/2022]
Abstract
Reflux laryngitis is a common clinic complication of nasogastric intubation (NSGI). Since there is no report concerning the effects of low level laser therapy (LLLT) on reflux laryngitis, this study aimed to analyze the protective effect of single and combined therapies with low level laser at the doses of 2.1J and 2.1+1.2 J with a total irradiation time of 30s and 30+30 s, respectively, on a model of neurogenic reflux laryngitis. NSGI was performed in Wistar rats, assigned into groups: NGI (no treatment), NLT17.5 (single therapy), and NLT17.5/10.0 (combined therapy, applied sequentially). Additional non-intubated and non-irradiated rats were use as controls (CTR). Myeloperoxidase (MPO) activity was assessed by colorimetric method after the intubation period (on days 1, 3, 5, and 7), whereas paraffin-embedded laryngeal specimens were used to carry out histopathological analysis of the inflammatory response, granulation tissue, and collagen deposition 7 days after NSGI. Significant reduction in MPO activity (p<0.05) and in the severity of the inflammatory response (p<0.05), and improvement in the granulation tissue (p<0.05) was observed in NLT17.5/10.0 group. Mast cells count was significantly decreased in NGI and NLT17.5 groups (p<0.001), whereas no difference was observed between NLT17.5/10.0 and CTR groups (p>0.05). NLT17.5/10.0 group also showed better collagenization pattern, in comparison to NGI and NLT17.5 groups. This study suggests that the combined therapy successfully modulated the inflammatory response and collagenization in experimental model of NSGI-induced neurogenic laryngitis.
Collapse
|
26
|
Hussein AJ, Alfars AA, Falih MAJ, Hassan ANA. Effects of a low level laser on the acceleration of wound healing in rabbits. NORTH AMERICAN JOURNAL OF MEDICAL SCIENCES 2012; 3:193-7. [PMID: 22540090 PMCID: PMC3336911 DOI: 10.4297/najms.2011.3193] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background: Tissue healing is a complex process that involves local and systemic responses. The use of low level laser therapy for wound healing has been shown to be effective in modulating both local and systemic response. Aim: The aim of this study was to accelerate and facilitate wound healing and reduce scar formation and wound contraction of an open wound by a low level laser. Materials & Methods: Twenty adult male rabbits, lepus cuniculus demostica, were brought from a Basrah local market and raised under proper management conditions in Basrah Veterinary Medicine College. The age of these rabbits ranged between 8-10 months and their body weight was 1.5-2 Kg. The rabbits were divided into two groups, group I (Control) and group II (Treated). General anesthesia was provided by a mixture of Xylazine and Ketamine at a ratio of 1:0.5m intramuscularly. Selected sites were shaved, cleaned and disinfected. A wound of 4-cm length and 3-cm depth was made on the gluteal region; six hours later, the wound was treated with gallium aluminum and an arsenide diode laser with a power output of 10m at a wavelength of 890nm in pulsed nods, with a frequency of 20 KLTZ. The wound exposure to the laser was once a day at 890 nm wavelength for 5 minutes over a 7-day period. Histopathological study was obtained regarding the wound depth and edge of the skin on the 3rd, 7th and 14th days. Results: The histopathological finding of group I at three days postoperative showed hemorrhage with inflammatory cell infiltration, mainly neutrophils as well as congested blood vessels in the gap. At seven days, the gap contained necrotized neutrophils together with hemolysis and granulation tissue under the dermis tissue. Hemolysis was seen between the muscle fibers. At 14 days, there was irregular fibrous connective tissue proliferation with congested blood vessels seen in the gap with mononuclear cell infiltration. In group II at three days postoperative, severe inflammatory cell infiltration was observed, mainly neutrophils with proliferation of fibroblasts from a few fibrous connective tissues. On the 7th day, the main lesion was characterized by severe granulation tissue that consisted of proliferation of fibrous connective tissue and congested blood vessels in the gap of the incision with mononuclear cell infiltration. Conclusions: The study found that low level laser therapy (II) was effective in open wounds, which showed better regeneration and faster restoration of structural and functional integrity as compared to the control group.
Collapse
Affiliation(s)
- Adel J Hussein
- Department of Anatomy & Histology, College of Veterinary, Basrah University, Basrah, Iraq
| | | | | | | |
Collapse
|
27
|
Leal CT, Bezerra ADL, Lemos A. A efetividade do laser de HeNe 632,8 nm no reestabelecimento da integridade dos tecidos cutâneos em animais experimentais: revisão sistemática. FISIOTERAPIA E PESQUISA 2012. [DOI: 10.1590/s1809-29502012000300016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
O objetivo desta revisão sistemática foi analisar o efeito do laser de HeNe na cicatrização de feridas em ratos. Foram selecionados estudos experimentais que adotaram o laser HeNe para o tratamento de feridas agudas em ratos adultos saudáveis, com lesões induzidas por bisturi, nas bases de dados PubMed/MEDLINE, LILACS e SciELO. Foram utilizados os seguintes descritores: cicatrização de feridas e colágeno, de acordo com o MeSH e o DeCS, além dos unitermos laser HeNe e reparação da pele e seus equivalentes em inglês e espanhol. Três estudos foram incluídos na revisão sistemática, não sendo possível a realização de metanálise, devido à impossibilidade de comparação entre as metodologias dos estudos selecionados. Todos os estudos realizaram análise por meio de cortes histológicos das cicatrizes. A presença de falhas metodológicas nos três artigos dificultou a interpretação fidedigna dos dados encontrados. Os estudos destacaram uma redução na intensidade da resposta inflamatória e uma melhor organização das fibras colágenas no grupo irradiado. A terapia com laser HeNe mostrou boa resposta no reparo tecidual. No entanto, tais resultados devem ser analisados de modo criterioso, uma vez que há presença de heterogeneidade, principalmente em relação aos parâmetros adotados.
Collapse
|
28
|
Effects of pulsed infra-red low level-laser irradiation on open skin wound healing of healthy and streptozotocin-induced diabetic rats by biomechanical evaluation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2012; 111:1-8. [DOI: 10.1016/j.jphotobiol.2012.03.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 02/18/2012] [Accepted: 03/01/2012] [Indexed: 01/12/2023]
|
29
|
Fahimipour F, Mahdian M, Houshmand B, Asnaashari M, Sadrabadi AN, Farashah SEN, Mousavifard SM, Khojasteh A. The effect of He-Ne and Ga-Al-As laser light on the healing of hard palate mucosa of mice. Lasers Med Sci 2012; 28:93-100. [PMID: 22415572 DOI: 10.1007/s10103-012-1060-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 01/18/2012] [Indexed: 11/26/2022]
Abstract
Low-level laser therapy (LLLT) has been used to accelerate wound healing, yet questions remain concerning its therapeutic applications. This study aimed to compare the healing efficacy of helium-neon (He-Ne) red light (laser) and gallium aluminum arsenide (Ga-Al-As) infrared lasers at two different doses on hard palate wounds. In a randomized controlled study, 75 adult male mice were divided into five groups of 15 each, after undergoing identical surgical procedures; a control group, with no laser irradiation; HD1 and HD2 groups, treated with He-Ne laser (wavelengths 632.8 nm, power 5 mW, and spot size 0.02 cm(2)) at doses of 4 J/cm(2) and 7.5 J/cm(2) respectively; and GD1 and GD2 groups, treated with Ga-Al-As laser (wavelengths 830 nm, peak power 25 mW, and spot size 0.10 cm(2)) at the doses of 4 J/cm(2) and 7.5 J/cm(2), respectively. Five animals from each group were killed on the third, seventh, and 14 days after surgery, and biopsies were made for histological analysis. On the 3rd and 7th day after the surgery, the number of polymorphonuclear cells (PMN) in HD1, HD2, GD1, and GD2 groups was significantly lower than that of the control group. On the 7th and 14th day, the fibroblasts and new blood vessels counts and collagen density fibers in HD1, HD2, GD1, and GD2 groups were also significantly higher than that of the control groups, and the fibroblast counts and collagen density fibers in HD1 and HD2 groups were higher than that of the GD1 and GD2 groups. LLLT with He-Ne laser compared to Ga-Al-As laser has a positive healing effect on hard palate gingival wounds in mice regardless of the radiation dose.
Collapse
Affiliation(s)
- Farahnaz Fahimipour
- Iran Center for Dental Research, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Sharma SK, Kharkwal GB, Sajo M, Huang YY, De Taboada L, McCarthy T, Hamblin MR. Dose response effects of 810 nm laser light on mouse primary cortical neurons. Lasers Surg Med 2012; 43:851-9. [PMID: 21956634 DOI: 10.1002/lsm.21100] [Citation(s) in RCA: 349] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND OBJECTIVES In the past four decades numerous studies have reported the efficacy of low level light (laser) therapy (LLLT) as a treatment for diverse diseases and injuries. Recent studies have shown that LLLT can biomodulate processes in the central nervous system and has been extensively studied as a stroke treatment. However there is still a lack of knowledge on the effects of LLLT at the cellular level in neurons. The present study aimed to study the effect of 810 nm laser on several cellular processes in primary cortical neurons cultured from embryonic mouse brains. STUDY DESIGN/MATERIALS AND METHODS Neurons were irradiated with fluences of 0.03, 0.3, 3, 10, or 30 J/cm(2) of 810-nm laser delivered over varying times at 25 mW/cm(2) and intracellular levels of reactive oxygen species (ROS), nitric oxide and calcium were measured using fluorescent probes within 5 minutes of the end of irradiation. The changes in mitochondrial function in response to light were studied in terms of adenosine triphosphate (ATP) and mitochondrial membrane potential (MMP). RESULTS Light induced a significant increase in calcium, ATP and MMP at lower fluences and a decrease at higher fluences. ROS was significantly induced at low fluences, followed by a decrease and a second larger increase at 30 J/cm(2). Nitric oxide levels showed a similar pattern of a double peak but values were less significant compared to ROS. CONCLUSIONS The results suggest that LLLT at lower fluences is capable of inducing mediators of cell signaling processes which in turn may be responsible for the beneficial stimulatory effects of the low level laser. At higher fluences beneficial mediators are reduced and high levels of Janus-type mediators such as ROS and NO (beneficial at low concentrations and harmful at high concentrations) may be responsible for the damaging effects of high-fluence light and the overall biphasic dose response.
Collapse
Affiliation(s)
- Sulbha K Sharma
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Khoshvaghti A, Zibamanzarmofrad M, Bayat M. Effect of low-level treatment with an 80-Hz pulsed infrared diode laser on mast-cell numbers and degranulation in a rat model of third-degree burn. Photomed Laser Surg 2011; 29:597-604. [PMID: 21456947 DOI: 10.1089/pho.2010.2783] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND DATA Low-level laser therapy (LLLT) has been reported to be capable of changing mast cell numbers and degranulation in experimental burns in rats. OBJECTIVE We conducted a study of the influence of LLLT on mast cells in a rat model of third-degree burn. METHODS In this study we divided 48 rats equally into two groups of 24 rats each. Third-degree burns were inflicted at three different locations on each rat in each group. The first burn site on rats in group I was treated with 890-nm pulsed laser, 75W peak, 80 Hz, 180 ns, average power 1mW, illuminated area 1 cm(2), 1 mW/cm(2), 856 sec, 0.924 J/cm(2). The second burn site on both groups of rats was treated with 0.2% nitrofurazone cream. Mast cell numbers and degranulation at each burn site on each group of rats were then assessed at 4, 8, 13, and 20 days after the infliction of burns. RESULTS Analysis of variance on day 4 showed that the total numbers of mast cells were significantly lower at the laser-treated burn sites than at other burn sites on both groups of rats. On day 8 the total numbers of mast cells were again significantly lower at the laser-treated burn sites than at other burn sites, and on day 13, the numbers of both types 1 and 2 mast cells were significantly lower at the laser-treated burn sites than at other burn sites. CONCLUSIONS We conclude that LLLT can significantly decrease total numbers of mast cells during the proliferation and remodeling phases of healing in a rat model of third-degree burn.
Collapse
Affiliation(s)
- Amir Khoshvaghti
- Anatomy Department, Medical Faculty, Artesh University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
32
|
Sanati MH, Torkaman G, Hedayati M, Dizaji MM. Effect of Ga-As (904nm) and He-Ne (632.8 nm) laser on injury potential of skin full-thickness wound. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 103:180-5. [PMID: 21450490 DOI: 10.1016/j.jphotobiol.2011.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 02/19/2011] [Accepted: 03/02/2011] [Indexed: 11/28/2022]
Abstract
Injury potential may have a triggering biological role in wound healing. In this study, the effect of photostimulation to promote wound healing and its effect on injury potential was investigated using the Ga-As and He-Ne lasers. In this study, 30 healthy male Sprague-Dawley rats were randomly divided into a control and two laser groups, He-Ne and Ga-As laser. A 2.5 cm craniocaudal full-thickness skin incision was made on each animal's dorsal region. Differential skin surface potential was measured before and immediately after the injury and also up to the 21st day, every other day. Wound surface area was also measured. Immediately after injury, wound potential significantly increased in all three groups. Maximum positive peak of injury potential was greater in Ga-As group compared to He-Ne laser and control groups (P<0.05) and lasting period of maximum positive potential in two laser groups was longer than that in the control group. There were no significant differences between the mean potential of before wounding and after the 15th, 17th, and 19th day in Ga-As, He-Ne, and control group, respectively (P>0.05). On the other hand, Ga-As and He-Ne laser facilitated the normal distribution of skin potential after wounding. These findings demonstrate that Ga-As laser may be more effective on wound closure and on returning the injury potential to normal level than the He-Ne laser.
Collapse
Affiliation(s)
- Mahsa Hoseini Sanati
- Physical Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran.
| | | | | | | |
Collapse
|
33
|
Influence of naloxone and methysergide on the analgesic effects of low-level laser in an experimental pain model. Rev Bras Anestesiol 2011; 60:302-10. [PMID: 20682161 DOI: 10.1016/s0034-7094(10)70037-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 02/03/2010] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Although the mechanism of action of laser phototherapy (LPT) is not known, it is a promising analgesic method. The aim of this study was to evaluate whether the action of LPT depends on the activation of peripheral opioid or serotonergic receptors. METHOD Inflammatory pain was induced through the injection of carrageenin in the left posterior paw of male Wistar rats. The InGaAIP visible laser diode (660 nm) with fluency of 2.5 J*cm(-2) was used. Von Frey filaments were used to analyze mechanical hyperalgesia. Animals were separated into five groups: Carrageenin; Laser (LPT); Non-coherent light; LPT + Naloxone; and LPT + Methysergide. RESULTS Low-Level Laser phototherapy proved to be an effective analgesic method, while non-coherent light did not show a similar effect. The use of naloxone blocked the analgesic effect of LPT, while methysergide did not affect LPT-induced analgesia. CONCLUSIONS According to the parameter used in this study, LPT produced analgesia. Analgesia induced by laser phototherapy is mediated by peripheral opioid receptors. Laser phototherapy does not seem to interact with peripheral serotonergic receptors.
Collapse
|
34
|
Peplow PV, Chung TY, Baxter GD. Laser Photobiomodulation of Wound Healing: A Review of Experimental Studies in Mouse and Rat Animal Models. Photomed Laser Surg 2010; 28:291-325. [DOI: 10.1089/pho.2008.2446] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Philip V. Peplow
- Department of Anatomy & Structural Biology, University of Otago, Dunedin, New Zealand
| | - Tzu-Yun Chung
- Department of Anatomy & Structural Biology, University of Otago, Dunedin, New Zealand
| | - G. David Baxter
- Centre for Physiotherapy Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
35
|
da Silva JP, da Silva MA, Almeida APF, Junior IL, Matos AP. Laser Therapy in the Tissue Repair Process: A Literature Review. Photomed Laser Surg 2010; 28:17-21. [DOI: 10.1089/pho.2008.2372] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | | | | | | | - Areolino Pena Matos
- Physiotherapy Department, Universidade Camilo Castelo Branco, São Paulo, Brazil
| |
Collapse
|
36
|
Hu J, Li GG, Zhang H, Xiang N, Chen ZQ, Wang RL, Xiang Y, Li B, Li ZJ, He YY, Wang LF. The influence of He-Ne laser on scar formation after trabeculectomy in rabbits. Int J Ophthalmol 2010; 3:132-6. [PMID: 22553536 DOI: 10.3980/j.issn.2222-3959.2010.02.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 06/01/2010] [Indexed: 11/02/2022] Open
Abstract
AIM To investigate the influence of He-Ne lasers on scar formation in the filtration canal after trabeculectomy in a rabbit model, as well as to explore the mechanisms for preventing scar formation when using He-Ne lasers in vivo. METHODS Experiment 1: Four groups were established (four eyes in each group). In 12 eyes, the upper nasal limbus area next to the upper rectus muscle received 10 minutes of He-Ne laser irradiation (100, 150, 200mW/cm(2); 60, 90, 120J/cm(2)) every day for three days. Four eyes served as controls. Twenty-four hours after the final irradiation, the rabbits were sacrificed and the irradiated tissue was excised, fixed with paraformaldehyde and tested for proliferating cell nuclear antigen (PCNA), connective tissue growth factor (CTGF) and apoptosis (TUNEL). Experiment 2: Forty-two rabbits were randomly divided into two groups and standard trabeculectomy was performed in the right eyes either after 200mW/cm(2) He-Ne laser irradiation or not in the filtration area. The expression of PCNA and CTGF, apoptosis and collagen density in the filtration area were tested on the 7(th), 14(th) and 28(th) day after surgery. RESULTS Experiment 1: There were no more PCNA and CTGF positive cells in the He-Ne irradiation group than in the control group. No apoptotic cells were found in either group. Experiment 2: The expression of PCNA and CTGF was lower in the He-Ne irradiation group than in the control group on the 7(th) and 14(th) day after trabeculectomy surgery (P<0.05); no apoptotic cells were detected in either group. Collagen density was significantly lower in the He-Ne irradiation group than in the control group on the 14(th) and 28(th) day after surgery (P<0.05). CONCLUSION Pretreating the filtration area with 200mW/cm(2) (120J/cm(2)) of He-Ne laser irradiation may be helpful in preventing scar formation after trabeculectomy, possibly due to the downregulation of the expression of PCNA, CTGF and collagen synthesis in fibroblasts.
Collapse
Affiliation(s)
- Jun Hu
- Department of Ophthalmology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Light Therapy and Advanced Wound Care on a Neuropathic Plantar Ulcer on a Charcot Foot. J Wound Ostomy Continence Nurs 2008. [DOI: 10.1097/01.won.0000308629.99076.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Awad SS, El-Din WH. LOW ENERGY IPL THERAPY FOR THE MANAGEMENT OF RECALCITRANT POSTHERPETIC NEURALGIA. Laser Ther 2008. [DOI: 10.5978/islsm.17.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Photomedicine and LLLT Literature Watch. Photomed Laser Surg 2007. [DOI: 10.1089/pho.2007.9980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|