1
|
Promising Application of D-Amino Acids toward Clinical Therapy. Int J Mol Sci 2022; 23:ijms231810794. [PMID: 36142706 PMCID: PMC9503604 DOI: 10.3390/ijms231810794] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022] Open
Abstract
The versatile roles of D-amino acids (D-AAs) in foods, diseases, and organisms, etc., have been widely reported. They have been regarded, not only as biomarkers of diseases but also as regulators of the physiological function of organisms. Over the past few decades, increasing data has revealed that D-AAs have great potential in treating disease. D-AAs also showed overwhelming success in disengaging biofilm, which might provide promise to inhibit microbial infection. Moreover, it can effectively restrain the growth of cancer cells. Herein, we reviewed recent reports on the potential of D-AAs as therapeutic agents for treating neurological disease or tissue/organ injury, ameliorating reproduction function, preventing biofilm infection, and inhibiting cancer cell growth. Additionally, we also reviewed the potential application of D-AAs in drug modification, such as improving biostability and efficiency, which has a better effect on therapy or diagnosis.
Collapse
|
3
|
Hathazi D, Cox D, D'Amico A, Tasca G, Charlton R, Carlier RY, Baumann J, Kollipara L, Zahedi RP, Feldmann I, Deleuze JF, Torella A, Cohn R, Robinson E, Ricci F, Jungbluth H, Fattori F, Boland A, O’Connor E, Horvath R, Barresi R, Lochmüller H, Urtizberea A, Jacquemont ML, Nelson I, Swan L, Bonne G, Roos A. INPP5K and SIL1 associated pathologies with overlapping clinical phenotypes converge through dysregulation of PHGDH. Brain 2021; 144:2427-2442. [PMID: 33792664 PMCID: PMC8418339 DOI: 10.1093/brain/awab133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 01/12/2021] [Accepted: 01/30/2021] [Indexed: 12/22/2022] Open
Abstract
Marinesco-Sjögren syndrome is a rare human disorder caused by biallelic mutations in SIL1 characterized by cataracts in infancy, myopathy and ataxia, symptoms which are also associated with a novel disorder caused by mutations in INPP5K. While these phenotypic similarities may suggest commonalties at a molecular level, an overlapping pathomechanism has not been established yet. In this study, we present six new INPP5K patients and expand the current mutational and phenotypical spectrum of the disease showing the clinical overlap between Marinesco-Sjögren syndrome and the INPP5K phenotype. We applied unbiased proteomic profiling on cells derived from Marinesco-Sjögren syndrome and INPP5K patients and identified alterations in d-3-PHGDH as a common molecular feature. d-3-PHGDH modulates the production of l-serine and mutations in this enzyme were previously associated with a neurological phenotype, which clinically overlaps with Marinesco-Sjögren syndrome and INPP5K disease. As l-serine administration represents a promising therapeutic strategy for d-3-PHGDH patients, we tested the effect of l-serine in generated sil1, phgdh and inpp5k a+b zebrafish models, which showed an improvement in their neuronal phenotype. Thus, our study defines a core phenotypical feature underpinning a key common molecular mechanism in three rare diseases and reveals a common and novel therapeutic target for these patients.
Collapse
Affiliation(s)
- Denisa Hathazi
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Dan Cox
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Newcastle upon Tyne, NE1 3BZ, UK
| | - Adele D'Amico
- Laboratory of Molecular Medicine for Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children’s Hospital, 00146 Rome, Italy
| | - Giorgio Tasca
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Richard Charlton
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Newcastle upon Tyne, NE1 3BZ, UK
| | - Robert-Yves Carlier
- AP-HP, Service d’Imagerie Médicale, Raymond Poincaré Hospital, 92380 Garches, France
- Inserm U 1179, University of Versailles Saint-Quentin-en-Yvelines (UVSQ), 78180 Versailles, France
| | - Jennifer Baumann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | | | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
| | - Ingo Feldmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Jean-Francois Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH) (A.B., J.F.D.), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91000 Evry, France
| | - Annalaura Torella
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Ronald Cohn
- SickKids Research Institute, Department of Paediatrics and Molecular Genetics, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Emily Robinson
- Department of molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK
| | - Francesco Ricci
- Department of molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK
| | - Heinz Jungbluth
- Guy’s and St Thomas’ NHS Trust, King’s College London, London, SE1 7EH, UK
| | - Fabiana Fattori
- Laboratory of Molecular Medicine for Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children’s Hospital, 00146 Rome, Italy
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine (CNRGH) (A.B., J.F.D.), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91000 Evry, France
| | - Emily O’Connor
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 5B2, Canada
| | - Rita Horvath
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Rita Barresi
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Newcastle upon Tyne, NE1 3BZ, UK
| | - Hanns Lochmüller
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 5B2, Canada
- Department of Neuropediatrics and Muscle Disorders, Medical Center—University of Freiburg, Faculty of Medicine, 79095 Freiburg, Germany
| | | | - Marie-Line Jacquemont
- Unité de Génétique Médicale, Pôle Femme-Mère-Enfant, Groupe Hospitalier Sud Réunion, CHU de La Réunion, 97410 La Réunion, France
| | - Isabelle Nelson
- Sorbonne Université, Inserm UMRS974, Centre de Recherche en Myologie, Institut de Myologie, 75013 Paris, France
| | - Laura Swan
- Department of molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK
| | - Gisèle Bonne
- Sorbonne Université, Inserm UMRS974, Centre de Recherche en Myologie, Institut de Myologie, 75013 Paris, France
| | - Andreas Roos
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 5B2, Canada
- Department of Pediatric Neurology, University Hospital Essen, University of Duisburg-Essen, Faculty of Medicine, 45147 Essen, Germany
| |
Collapse
|
4
|
Bragato C, Gaudenzi G, Blasevich F, Pavesi G, Maggi L, Giunta M, Cotelli F, Mora M. Zebrafish as a Model to Investigate Dynamin 2-Related Diseases. Sci Rep 2016; 6:20466. [PMID: 26842864 PMCID: PMC4740890 DOI: 10.1038/srep20466] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 01/05/2016] [Indexed: 12/13/2022] Open
Abstract
Mutations in the dynamin-2 gene (DNM2) cause autosomal dominant centronuclear myopathy (CNM) and dominant intermediate Charcot-Marie-Tooth (CMT) neuropathy type B (CMTDIB). As the relation between these DNM2-related diseases is poorly understood, we used zebrafish to investigate the effects of two different DNM2 mutations. First we identified a new alternatively spliced zebrafish dynamin-2a mRNA (dnm2a-v2) with greater similarity to human DNM2 than the deposited sequence. Then we knocked-down the zebrafish dnm2a, producing defects in muscle morphology. Finally, we expressed two mutated DNM2 mRNA by injecting zebrafish embryos with human mRNAs carrying the R522H mutation, causing CNM, or the G537C mutation, causing CMT. Defects arose especially in secondary motor neuron formation, with incorrect branching in embryos injected with CNM-mutated mRNA, and total absence of branching in those injected with CMT-mutated mRNA. Muscle morphology in embryos injected with CMT-mutated mRNA appeared less regularly organized than in those injected with CNM-mutated mRNA. Our results showing, a continuum between CNM and CMTDIB phenotypes in zebrafish, similarly to the human conditions, confirm this animal model to be a powerful tool to investigate mutations of DNM2 in vivo.
Collapse
Affiliation(s)
- Cinzia Bragato
- Neuromuscular Diseases and Neuroimmunology Unit, IRCCS Neurological Institute C. Besta, Milano, Italy
| | - Germano Gaudenzi
- Department of Biosciences, University of Milan, Via Celoria, 26, 20133, Milan, Italy
| | - Flavia Blasevich
- Neuromuscular Diseases and Neuroimmunology Unit, IRCCS Neurological Institute C. Besta, Milano, Italy
| | - Giulio Pavesi
- Department of Biosciences, University of Milan, Via Celoria, 26, 20133, Milan, Italy
| | - Lorenzo Maggi
- Neuromuscular Diseases and Neuroimmunology Unit, IRCCS Neurological Institute C. Besta, Milano, Italy
| | - Michele Giunta
- Neuromuscular Diseases and Neuroimmunology Unit, IRCCS Neurological Institute C. Besta, Milano, Italy
| | - Franco Cotelli
- Department of Biosciences, University of Milan, Via Celoria, 26, 20133, Milan, Italy
| | - Marina Mora
- Neuromuscular Diseases and Neuroimmunology Unit, IRCCS Neurological Institute C. Besta, Milano, Italy
| |
Collapse
|