1
|
Yang J, Wang Y, Wang G, Guo Z, Li X, Lu J, Tu H, Li S, Wan J, Guan G, Chen L. Leptin A deficiency affecting the mitochondrial dynamics of aged oocytes in medaka (Oryzias latipes). Mol Cell Endocrinol 2024; 593:112345. [PMID: 39153543 DOI: 10.1016/j.mce.2024.112345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Mitochondrial dysfunction and metabolic disorder have been associated to age-related subfertility, however, the precise molecular mechanism controlling the development of fertile oocytes in aging females remains elusive. Leptin plays an important role in the maintenance of energy homeostasis, as both excessive or insufficient levels can affect the body weight and fertility of mice. Here, we report that leptin A deficiency affects growth and shortens reproductive lifespan by reducing fertility in medaka (Oryzias latipes). Targeted disruption of lepa (lepa-/-) females reduced their egg laying and fertility compared to normal 3-month-old females (lepa+/+ sexual maturity), with symptoms worsening progressively at the age of 6 months and beyond. Transcriptomic analysis showed that differentially expressed genes involved in metabolic and mitochondrial pathways were significantly altered in lepa-/- ovaries compared with the normal ovaries at over 6 months old. The expression levels of the autophagy-promoting genes ulk1a, atg7 and atg12 were significantly differentiated between normal and lepa-/- ovaries, which were further confirmed by quantitative polymerase chain reaction analysis, indicating abnormal autophagy activation and mitochondrial dysfunction in oocyte development lacking lepa. Transmission electron microscopy observations further confirmed these mitochondrial disorders in lepa-deficient oocytes. In summary, these research findings provide novel insights into how leptin influences female fertility through mitochondrial-mediated oocyte development.
Collapse
Affiliation(s)
- Jihui Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, PR China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, PR China
| | - Ying Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, PR China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, PR China
| | - Guangxing Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, PR China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, PR China
| | - Zhenhua Guo
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, PR China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, PR China
| | - Xinwen Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, PR China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, PR China
| | - Jigang Lu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, PR China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, PR China
| | - Huaming Tu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, PR China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, PR China
| | - Shilin Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, PR China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, PR China
| | - Jinming Wan
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, PR China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, PR China
| | - Guijun Guan
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, PR China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, PR China.
| | - Liangbiao Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, PR China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, PR China.
| |
Collapse
|
2
|
Chisada S, Yoshida M, Karita K. Polyethylene microbeads are more critically toxic to the eyes and reproduction than the kidneys or growth in medaka, Oryzias latipes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115957. [PMID: 33158613 DOI: 10.1016/j.envpol.2020.115957] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/15/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
Many studies using experimental and wild animals have reported negative effects of microplastic beads (MPs) ingestion. However, data regarding the lowest observed adverse effect levels (LOAELs) of MPs remain limited. Our aim was to evaluate the adverse effect levels of polyethylene MPs (10-63 μm diameter) with respect to growth, reproduction, and the eyes and kidneys of medaka (Oryzias latipes) under breeding conditions to contribute to future research involving LOAEL determinations. Fish were exposed to 0.009 mg-MPs (approximately 1000 particles)/L to 0.32 mg-MPs (approximately 40,000 particles)/L for 12 weeks. The eyes and kidneys were evaluated by histopathologic analysis. Although histologic analyses indicated an absence of MPs in the tissues, the eyes and kidneys as well as reproduction were adversely affected by increasing MP concentrations. The number of spawned eggs decreased, and changes were noted in the eyes of fish exposed to ≥0.032 mg-MPs/L under breeding conditions. The eyes exhibited thinning of the optic nerve fiber layer and dilatation of retinal capillaries compared with medaka not treated with MPs. Changes in the kidneys were observed in fish exposed to ≥0.065 mg-MPs/L. The mesangial matrix in the glomerulus of the kidneys was expanded compared with non-treated medaka, suggesting a deterioration in renal function. Analyses of an oxidative stress marker in the tissues indicated that lesion progression was associated with increased oxidative stress. Furthermore, a comparison of adverse effect levels suggested that MPs were more toxic to the eyes and reproduction than the kidneys or growth. Our data should prove useful for determining the LOAELs of polyethylene beads on vertebrates and enhance understanding of the mechanism underlying the biological toxicity of polyethylene MPs.
Collapse
Affiliation(s)
- Shinichi Chisada
- Department of Hygiene and Public Health, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611, Japan
| | - Masao Yoshida
- Department of Hygiene and Public Health, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611, Japan
| | - Kanae Karita
- Department of Hygiene and Public Health, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611, Japan.
| |
Collapse
|
3
|
Intact in vivo visualization of telencephalic microvasculature in medaka using optical coherence tomography. Sci Rep 2020; 10:19831. [PMID: 33199719 PMCID: PMC7669881 DOI: 10.1038/s41598-020-76468-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/28/2020] [Indexed: 11/09/2022] Open
Abstract
To date, various human disease models in small fish-such as medaka (Oryzias lapties)-have been developed for medical and pharmacological studies. Although genetic and environmental homogeneities exist, disease progressions can show large individual differences in animal models. In this study, we established an intact in vivo angiographic approach and explored vascular networks in the telencephalon of wild-type adult medaka using the spectral-domain optical coherence tomography. Our approach, which required neither surgical operations nor labeling agents, allowed to visualize blood vessels in medaka telencephala as small as about 8 µm, that is, almost the size of the blood cells of medaka. Besides, we could show the three-dimensional microvascular distribution in the medaka telencephalon. Therefore, the intact in vivo imaging via optical coherence tomography can be used to perform follow-up studies on cerebrovascular alterations in metabolic syndrome and their associations with neurodegenerative disease models in medaka.
Collapse
|
4
|
Chisada S, Sugiyama A. Renal lesions in leptin receptor-deficient medaka ( Oryzias latipes). J Toxicol Pathol 2019; 32:297-303. [PMID: 31719758 PMCID: PMC6831499 DOI: 10.1293/tox.2019-0021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/11/2019] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to elucidate the renal lesions of leptin receptor-deficient
medaka showing hyperglycemia and hypoinsulinemia and to evaluate the usefulness of the
medaka as a model of diabetic nephropathy. Leptin receptor-deficient medaka at 20 and 30
weeks of age showed hyperglycemia and hypoinsulinemia; they also showed a higher level of
plasma creatinine than the control medaka. Histopathologically, dilation of glomerular
capillary lumina and of afferent/efferent arterioles was observed in leptin
receptor-deficient medaka at 20 weeks of age, and then glomerular enlargement with cell
proliferation and matrix expansion, formation of fibrin cap-like lesions, glomerular
atrophy with Bowman’s capsule dilation, and renal tubule dilation were observed at 30
weeks of age. These histopathological characteristics of leptin receptor-deficient medaka
were similar to the characteristics of kidney lesions of human and rodent models of type
II diabetes mellitus, making leptin receptor-deficient medaka a useful model of diabetic
nephropathy.
Collapse
Affiliation(s)
- Shinichi Chisada
- Department of Hygiene and Public Health, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
| | - Akihiko Sugiyama
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari-shi, Ehime 794-8555, Japan
| |
Collapse
|