1
|
Bian Y, Dong J, Zhou Z, Zhou H, Xu Y, Zhang Q, Chen C, Pi J. The spatiotemporal and paradoxical roles of NRF2 in renal toxicity and kidney diseases. Redox Biol 2025; 79:103476. [PMID: 39724848 PMCID: PMC11732127 DOI: 10.1016/j.redox.2024.103476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/04/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Over 10% of the global population is at risk to kidney disorders. Nuclear factor erythroid-derived 2-related factor 2 (NRF2), a pivotal regulator of redox homeostasis, orchestrates antioxidant response that effectively counters oxidative stress and inflammatory response in a variety of acute pathophysiological conditions, including acute kidney injury (AKI) and early stage of renal toxicity. However, if persistently activated, NRF2-induced transcriptional cascade may disrupt normal cell signaling and contribute to numerous chronic pathogenic processes such as fibrosis. In this concise review, we assembled experimental evidence to reveal the cell- and pathophysiological condition-specific roles of NRF2 in renal chemical toxicity, AKI, and chronic kidney disease (CKD), all of which are closely associated with oxidative stress and inflammation. By incorporating pertinent research findings on NRF2 activators, we dissected the spatiotemporal roles of NRF2 in distinct nephrotoxic settings and kidney diseases. Herein, NRF2 exhibits diverse expression patterns and downstream gene profiles across distinct kidney regions and cell types, and during specific phases of nephropathic progression. These changes are directly or indirectly connected to altered antioxidant defense, damage repair, inflammatory response, regulated cell death and fibrogenesis, culminating ultimately in either protective or deleterious outcomes. The spatiotemporal and paradoxical characteristics of NRF2 in mitigating nephrotoxicity suggest that translational application of NRF2 activation strategy for prevention and interventions of kidney injury are unlikely to be straightforward - right timing and spatial precision must be taken into consideration.
Collapse
Affiliation(s)
- Yiying Bian
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China.
| | - Jize Dong
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Zhengsheng Zhou
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Hua Zhou
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, China
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, GA, 30322, USA
| | - Chengjie Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China.
| | - Jingbo Pi
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
2
|
Koudelka A, Buchan GJ, Cechova V, O'Brien JP, Stevenson ER, Uvalle CE, Liu H, Woodcock SR, Mullett SJ, Zhang C, Freeman BA, Gelhaus SL. Lipoxin A 4 yields an electrophilic 15-oxo metabolite that mediates FPR2 receptor-independent anti-inflammatory signaling. J Lipid Res 2025; 66:100705. [PMID: 39566850 PMCID: PMC11729656 DOI: 10.1016/j.jlr.2024.100705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024] Open
Abstract
The enzymatic oxidation of arachidonic acid is proposed to yield trihydroxytetraene species (termed lipoxins) that resolve inflammation via ligand activation of the formyl peptide receptor, FPR2. While cell and murine models activate signaling responses to synthetic lipoxins, primarily lipoxin A4 (LXA4), there are expanding concerns about the reported biological formation, detection, and signaling mechanisms ascribed to LXA4 and related di- and tri-hydroxy ω-6 and ω-3 fatty acids. The generation and signaling actions of LXA4 and its primary 15-oxo metabolite were assessed in control, lipopolysaccharide-activated, and arachidonic acid-supplemented RAW264.7 and bone marrow-derived macrophages. Despite the expression of catalytically active enzymes required for LXA4 synthesis, both LXA4 and its 15-oxo-LXA4 metabolite were undetectable in all conditions. Moreover, synthetic LXA4 and the membrane-permeable 15-oxo-LXA4 methyl ester, which rapidly de-esterified to 15-oxo-LXA4, displayed no ligand activity for the putative LXA4 receptor FPR2. Alternatively, 15-oxo-LXA4, an electrophilic α,β-unsaturated ketone, alkylates nucleophilic amino acids and can modulate redox-sensitive transcriptional regulatory protein and enzyme function. 15-oxo-LXA4 activated nuclear factor (erythroid related factor 2)-like 2-regulated expression of anti-inflammatory and repair genes and inhibited NF-κB-regulated pro-inflammatory mediator expression. Synthetic LXA4 showed no impact on these macrophage anti-inflammatory and repair responses. In summary, these data show an absence of macrophage LXA4 formation and receptor-mediated signaling actions of synthetic LXA4. Rather, if present in sufficient concentrations, LXA4 and other mono- and poly-hydroxylated unsaturated fatty acids synthesized by macrophages would be readily oxidized to electrophilic α,β-unsaturated ketone products that modulate the redox-sensitive cysteine proteome via G-protein coupled receptor-independent mechanisms.
Collapse
Affiliation(s)
- Adolf Koudelka
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Gregory J Buchan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Veronika Cechova
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - James P O'Brien
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Emily R Stevenson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Division of Pulmonary and Critical Care Sleep Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Crystal E Uvalle
- Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Heng Liu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Steven R Woodcock
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Steven J Mullett
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bruce A Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Stacy L Gelhaus
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Koudelka A, Buchan GJ, Cechova V, O’Brien JP, Liu H, Woodcock SR, Mullett SJ, Zhang C, Freeman BA, Gelhaus SL. Lipoxin A 4 yields an electrophilic 15-oxo metabolite that mediates FPR2 receptor-independent anti-inflammatory signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579101. [PMID: 38370667 PMCID: PMC10871244 DOI: 10.1101/2024.02.06.579101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The enzymatic oxidation of arachidonic acid is proposed to yield trihydroxytetraene species (termed lipoxins) that resolve inflammation via ligand activation of the formyl peptide receptor, FPR2. While cell and murine models activate signaling responses to synthetic lipoxins, primarily 5S,6R,15S-trihydroxy-7E,9E,11Z,13E-eicosatetraenoic acid (lipoxin A4, LXA4), there are expanding concerns about the biological formation, detection and signaling mechanisms ascribed to LXA4 and related di- and tri-hydroxy ω-6 and ω-3 fatty acids. Herein, the generation and actions of LXA4 and its primary 15-oxo metabolite were assessed in control, LPS-activated and arachidonic acid supplemented RAW 264.7 macrophages. Despite protein expression of all enzymes required for LXA4 synthesis, both LXA4 and its 15-oxo-LXA4 metabolite were undetectable. Moreover, synthetic LXA4 and the membrane permeable 15-oxo-LXA4 methyl ester that is rapidly de-esterified to 15-oxo-LXA4, displayed no ligand activity for the putative LXA4 receptor FPR2, as opposed to the FPR2 ligand WKYMVm. Alternatively, 15-oxo-LXA4, an electrophilic α,β-unsaturated ketone, alkylates nucleophilic amino acids such as cysteine to modulate redox-sensitive transcriptional regulatory protein and enzyme function. 15-oxo-LXA4 activated nuclear factor (erythroid related factor 2)-like 2 (Nrf2)-regulated gene expression of anti-inflammatory and repair genes and inhibited nuclear factor (NF)-κB-regulated pro-inflammatory mediator expression. LXA4 did not impact these macrophage anti-inflammatory and repair responses. In summary, these data show an absence of macrophage LXA4 formation and receptor-mediated signaling actions. Rather, if LXA4 were present in sufficient concentrations, this, and other more abundant mono- and poly-hydroxylated unsaturated fatty acids can be readily oxidized to electrophilic α,β-unsaturated ketone products that modulate the redox-sensitive cysteine proteome via G-protein coupled receptor-independent mechanisms.
Collapse
Affiliation(s)
- Adolf Koudelka
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
| | - Gregory J. Buchan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
| | - Veronika Cechova
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
| | - James P. O’Brien
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
| | - Heng Liu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
| | - Steven R. Woodcock
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
| | - Steven J. Mullett
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
- Health Sciences Mass Spectrometry Core, University of Pittsburgh (Pittsburgh, PA 15213)
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
| | - Bruce A. Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
| | - Stacy L. Gelhaus
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
- Health Sciences Mass Spectrometry Core, University of Pittsburgh (Pittsburgh, PA 15213)
| |
Collapse
|
4
|
Zhang Z, Liang B, Jike W, Li R, Su X, Yu J, Liu T. The Protective Effect of Marsdenia tenacissima against Cisplatin-Induced Nephrotoxicity Mediated by Inhibiting Oxidative Stress, Inflammation, and Apoptosis. Molecules 2023; 28:7582. [PMID: 38005304 PMCID: PMC10674371 DOI: 10.3390/molecules28227582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/20/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Cisplatin (Cis) is considered to be one of the most effective drugs for killing cancer cells and remains a first-line chemotherapeutic agent. However, Cis's multiple toxicities (especially nephrotoxicity) have limited its clinical use. Marsdenia tenacissima (Roxb.) Wight et Arn. (MT), a traditional Chinese medicine (TCM) employed extensively in China, not only enhances the antitumor effect in combination with Cis, but is also used for its detoxifying effect, as it reduces the toxic side effects of chemotherapy drugs. The aim of this study was to explore the therapeutic effect of MT on Cis-induced nephrotoxicity, along with its underlying mechanisms. In this study, liquid-mass spectrometry was performed to identify the complex composition of the extracts of MT. In addition, we measured the renal function, antioxidant enzymes, and inflammatory cytokines in mice with Cis-induced nephrotoxicity and conducted renal histology evaluations to assess renal injury. The expressions of the proteins related to antioxidant, anti-inflammatory, and apoptotic markers in renal tissues was detected by Western blotting (WB). MT treatment improved the renal function, decreased the mRNA expression of the inflammatory factors, and increased the antioxidant enzyme activity in mice. A better renal histology was observed after MT treatment. Further, MT inhibited the expression of the phospho-NFκB p65 protein/NFκB p65 protein (p-p65)/p65, phospho-inhibitor of nuclear factor kappa B kinase beta subunit/inhibitor of nuclear factor kappa B kinase beta subunit (p-IKKβ/IKKβ), Bcl-2-associated X (Bax), and Cleaved Caspase 3/Caspase 3 proteins, while the expression of nuclear factor-erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), Recombinant NADH Dehydrogenase, Quinone 1 (NQO1), and B-cell lymphoma-2 (Bcl-2) was increased. The present study showed that MT ameliorated renal injury, which mainly occurs through the regulation of the Nrf2 pathway, the NF-κB pathway, and the suppression of renal tissue apoptosis. It also suggests that MT can be used as an adjuvant to mitigate the nephrotoxicity of Cis chemotherapy.
Collapse
Affiliation(s)
- Zhiguang Zhang
- School of Pharmacy, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China, Beijing 100081, China
| | - Boya Liang
- School of Pharmacy, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China, Beijing 100081, China
| | - Wugemo Jike
- School of Pharmacy, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China, Beijing 100081, China
| | - Runtian Li
- School of Pharmacy, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China, Beijing 100081, China
| | - Xinxin Su
- School of Pharmacy, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China, Beijing 100081, China
| | - Jie Yu
- School of Pharmacy, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China, Beijing 100081, China
| | - Tongxiang Liu
- School of Pharmacy, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China, Beijing 100081, China
| |
Collapse
|
5
|
Mapuskar KA, Pulliam CF, Zepeda-Orozco D, Griffin BR, Furqan M, Spitz DR, Allen BG. Redox Regulation of Nrf2 in Cisplatin-Induced Kidney Injury. Antioxidants (Basel) 2023; 12:1728. [PMID: 37760031 PMCID: PMC10525889 DOI: 10.3390/antiox12091728] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Cisplatin, a potent chemotherapeutic agent, is marred by severe nephrotoxicity that is governed by mechanisms involving oxidative stress, inflammation, and apoptosis pathways. The transcription factor Nrf2, pivotal in cellular defense against oxidative stress and inflammation, is the master regulator of the antioxidant response, upregulating antioxidants and cytoprotective genes under oxidative stress. This review discusses the mechanisms underlying chemotherapy-induced kidney injury, focusing on the role of Nrf2 in cancer therapy and its redox regulation in cisplatin-induced kidney injury. We also explore Nrf2's signaling pathways, post-translational modifications, and its involvement in autophagy, as well as examine redox-based strategies for modulating Nrf2 in cisplatin-induced kidney injury while considering the limitations and potential off-target effects of Nrf2 modulation. Understanding the redox regulation of Nrf2 in cisplatin-induced kidney injury holds significant promise for developing novel therapeutic interventions. This knowledge could provide valuable insights into potential strategies for mitigating the nephrotoxicity associated with cisplatin, ultimately enhancing the safety and efficacy of cancer treatment.
Collapse
Affiliation(s)
- Kranti A. Mapuskar
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA
| | - Casey F. Pulliam
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA
| | - Diana Zepeda-Orozco
- Pediatric Nephrology and Hypertension at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Benjamin R. Griffin
- Division of Nephrology, The University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
- Department of Internal Medicine, The University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Muhammad Furqan
- Department of Internal Medicine, The University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Douglas R. Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA
| | - Bryan G. Allen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA
| |
Collapse
|
6
|
Jawad M, Al-Akkam K, Mohammed M, Hassan SM. ROLE OF DIMETHYL FUMARATE (NRF2 ACTIVATOR) IN REDUCING OF CIPROFLOXACIN-INDUCED HEPATOTOXICITY IN RATS VIA THE NRF2/HO-1 PATHWAY. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2023; 76:1001-1006. [PMID: 37326082 DOI: 10.36740/wlek202305117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
OBJECTIVE The aim: The present study aims to study the effect of DMF on ciprofloxacin-induced liver damage as assessed by liver function and liver pathology and to study this effect if it is thought to activate the Nrf2 antioxidant defense mechanism. PATIENTS AND METHODS Materials and methods: G1 (control), G2 (ciprofloxacin group), G3 and G4 (two DMF groups rats treated with DMF 50mg and 100mg), and G5 and G6 (two DMF groups rats treated with DMF 50mg and 100mg) (two ciprofloxacin Plus DMF at 50 mg and 100 mg). The tests included study of liver function, Nrf2 analysis, and anti-oxidant enzyme analysis. RESULTS Results: The serum blood Nrf2, HO-1, and tissue anti-oxidant enzymes all increased after ciprofloxacin treatment. The serum levels of Nrf2 and HO-1 were higher in the ciprofloxacin plus DMF groups, but anti-oxidant enzymes were lower. DMF increased Nrf2 expression in rats when ciprofloxacin caused hepatotoxicity. CONCLUSION Conclusions: DMF lowers experimental hepatotoxicity in vivo. This effect is thought to activate the Nrf2 antioxidant defense mechanism.
Collapse
|
7
|
El-Waseif EG, Sharawy MH, Suddek GM. The modulatory effect of sodium molybdate against cisplatin-induced CKD: Role of TGF-β/Smad signaling pathway. Life Sci 2022; 306:120845. [DOI: 10.1016/j.lfs.2022.120845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 10/16/2022]
|
8
|
Domingo IK, Latif A, Bhavsar AP. Pro-Inflammatory Signalling PRRopels Cisplatin-Induced Toxicity. Int J Mol Sci 2022; 23:7227. [PMID: 35806229 PMCID: PMC9266867 DOI: 10.3390/ijms23137227] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Cisplatin is a platinum-based chemotherapeutic that has long since been effective against a variety of solid-cancers, substantially improving the five-year survival rates for cancer patients. Its use has also historically been limited by its adverse drug reactions, or cisplatin-induced toxicities (CITs). Of these reactions, cisplatin-induced nephrotoxicity (CIN), cisplatin-induced peripheral neuropathy (CIPN), and cisplatin-induced ototoxicity (CIO) are the three most common of several CITs recognised thus far. While the anti-cancer activity of cisplatin is well understood, the mechanisms driving its toxicities have only begun to be defined. Most of the literature pertains to damage caused by oxidative stress that occurs downstream of cisplatin treatment, but recent evidence suggests that the instigator of CIT development is inflammation. Cisplatin has been shown to induce pro-inflammatory signalling in CIN, CIPN, and CIO, all of which are associated with persisting markers of inflammation, particularly from the innate immune system. This review covered the hallmarks of inflammation common and distinct between different CITs, the role of innate immune components in development of CITs, as well as current treatments targeting pro-inflammatory signalling pathways to conserve the use of cisplatin in chemotherapy and improve long-term health outcomes of cancer patients.
Collapse
Affiliation(s)
| | | | - Amit P. Bhavsar
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada; (I.K.D.); (A.L.)
| |
Collapse
|
9
|
Wrona D, Majkutewicz I, Świątek G, Dunacka J, Grembecka B, Glac W. Dimethyl Fumarate as the Peripheral Blood Inflammatory Mediators Inhibitor in Prevention of Streptozotocin-Induced Neuroinflammation in Aged Rats. J Inflamm Res 2022; 15:33-52. [PMID: 35027835 PMCID: PMC8749052 DOI: 10.2147/jir.s342280] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/23/2021] [Indexed: 12/17/2022] Open
Abstract
Purpose Intracerebroventricular-(ICV)-streptozotocin-(STZ)-induced neuroinflammation is a model of Alzheimer’s disease (AD) compatible with the inflammation hypothesis of ageing (“inflammaging” state). Previously, we observed age-dependent (young vs aged) dimethyl fumarate (DMF)-induced anti-inflammatory and neuroprotective effects in the brain along with improvement in cognitive functions in rats with the ICV-STZ-induced model of AD. To evaluate whether DMF reduces neuroinflammation based on the peripheral inflammatory response inhibition, we determined peripheral inflammatory mediators in young and aged rats with the ICV-STZ-induced AD pathology following DMF therapy. Materials and Methods Young (4-month-old) and aged (22-month-old) rats were fed with 0.4% DMF rat chow for 21 consecutive days after ICV-STZ (3 mg/ventricle) injections. After behavioral testing, blood and spleens were collected to determine the numbers of leukocytes (WBC), lymphocytes and their subpopulations, haematological parameters, the concanavalin (Con)-A-induced production and plasma concentration of interferon (IFN)-γ, interleukin (IL)-6, IL-10 and corticosterone (COR). Results Age-dependent anti-inflammatory effect of the DMF treatment in rats with ICV-STZ injections manifested as decreased peripheral WBC and lymphocyte numbers, including TCD3+CD4+CD8−, TCD3+CD4−CD8+, B (CD45RA+) and NK (161a+), in aged rats. Furthermore, DMF lowered the blood and spleen lymphocyte production of pro-inflammatory IFN-γ and IL-6 in young and aged rats, whereas it enhanced the plasma level of anti-inflammatory IL-10 and lymphocyte’s ability to produce it in aged rats only. In parallel to changes in peripheral WBC numbers in the model of AD, DMF decreased the red blood cell number, haemoglobin concentration, haematocrit and mean platelet volume in aged, but not young, rats. In contrast to controls, DMF did not influence the COR response in STZ groups. Conclusion Besides preventing neuroinflammation, DMF acts on the pro-/anti-inflammatory balance in the periphery and causes an anti-inflammatory shift in T lymphocytes which could contribute to DMF’s therapeutic effects in the ICV-STZ-induced model of AD, in particular, in aged rats.
Collapse
Affiliation(s)
- Danuta Wrona
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, 80-308, Poland
| | - Irena Majkutewicz
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, 80-308, Poland
| | - Grzegorz Świątek
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, 80-308, Poland
| | - Joanna Dunacka
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, 80-308, Poland
| | - Beata Grembecka
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, 80-308, Poland
| | - Wojciech Glac
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, 80-308, Poland
| |
Collapse
|
10
|
Jiao D, Qi L, Hu L, Hu D, Li X, Li G, Li Z, Liu S, Zhao C, Wu H. Changes in aging-induced kidney dysfunction in mice based on a metabolomics analysis. Front Endocrinol (Lausanne) 2022; 13:959311. [PMID: 36157455 PMCID: PMC9492839 DOI: 10.3389/fendo.2022.959311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Kidney dysfunction is particularly important in systemic organ injuries caused by aging. Metabolomics are utilized in this study to explore the mechanism of kidney dysfunction during aging by the identification of metabolites and the characterization of metabolic pathways. We analyzed the serum biochemistry and kidney histopathology of male Kunming mice aged 3 months and 24 months and found that the aged mice had inflammatory lesions, aggravated fibrosis, and functional impairment. A high-resolution untargeted metabolomics analysis revealed that the endogenous metabolites in the kidneys and urine of the mice were significantly changed by 25 and 20 metabolites, respectively. A pathway analysis of these differential metabolites revealed six key signaling pathways, namely, D-glutamine and D-glutamate metabolism, purine metabolism, the citrate cycle [tricarboxylic acid (TCA) cycle], histidine metabolism, pyruvate metabolism, and glyoxylate and dicarboxylate metabolism. These pathways are involved in amino acid metabolism, carbohydrate metabolism, and nucleotide metabolism, and these can lead to immune regulation, inflammatory responses, oxidative stress damage, cellular dysfunction, and bioenergy disorders, and they are closely associated with aging and kidney insufficiency. We also screened nine types of sensitive metabolites in the urine as potential biomarkers of kidney dysfunction during the aging process to confirm their therapeutic targets in senior-induced kidney dysfunction and to improve the level of risk assessment for senile kidney injury.
Collapse
Affiliation(s)
- Danli Jiao
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Qi
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Hu
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Hu
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao Li
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guona Li
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zheying Li
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shimin Liu
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Zhao
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Chen Zhao, ; Huangan Wu,
| | - Huangan Wu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Chen Zhao, ; Huangan Wu,
| |
Collapse
|
11
|
Involvement of Tricarboxylic Acid Cycle Metabolites in Kidney Diseases. Biomolecules 2021; 11:biom11091259. [PMID: 34572472 PMCID: PMC8465464 DOI: 10.3390/biom11091259] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023] Open
Abstract
Mitochondria are complex organelles that orchestrate several functions in the cell. The primary function recognized is energy production; however, other functions involve the communication with the rest of the cell through reactive oxygen species (ROS), calcium influx, mitochondrial DNA (mtDNA), adenosine triphosphate (ATP) levels, cytochrome c release, and also through tricarboxylic acid (TCA) metabolites. Kidney function highly depends on mitochondria; hence mitochondrial dysfunction is associated with kidney diseases. In addition to oxidative phosphorylation impairment, other mitochondrial abnormalities have been described in kidney diseases, such as induction of mitophagy, intrinsic pathway of apoptosis, and releasing molecules to communicate to the rest of the cell. The TCA cycle is a metabolic pathway whose primary function is to generate electrons to feed the electron transport system (ETS) to drives energy production. However, TCA cycle metabolites can also release from mitochondria or produced in the cytosol to exert different functions and modify cell behavior. Here we review the involvement of some of the functions of TCA metabolites in kidney diseases.
Collapse
|
12
|
Yang Y, Cai F, Zhou N, Liu S, Wang P, Zhang S, Zhang Y, Zhang A, Jia Z, Huang S. Dimethyl fumarate prevents ferroptosis to attenuate acute kidney injury by acting on NRF2. Clin Transl Med 2021; 11:e382. [PMID: 33931960 PMCID: PMC8087913 DOI: 10.1002/ctm2.382] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/11/2021] [Accepted: 03/24/2021] [Indexed: 12/29/2022] Open
Affiliation(s)
- Yunwen Yang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Fangfang Cai
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Ning Zhou
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Suwen Liu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Peipei Wang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Shengnan Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Songming Huang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
McSweeney KR, Gadanec LK, Qaradakhi T, Ali BA, Zulli A, Apostolopoulos V. Mechanisms of Cisplatin-Induced Acute Kidney Injury: Pathological Mechanisms, Pharmacological Interventions, and Genetic Mitigations. Cancers (Basel) 2021; 13:1572. [PMID: 33805488 PMCID: PMC8036620 DOI: 10.3390/cancers13071572] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
Administration of the chemotherapeutic agent cisplatin leads to acute kidney injury (AKI). Cisplatin-induced AKI (CIAKI) has a complex pathophysiological map, which has been linked to cellular uptake and efflux, apoptosis, vascular injury, oxidative and endoplasmic reticulum stress, and inflammation. Despite research efforts, pharmaceutical interventions, and clinical trials spanning over several decades, a consistent and stable pharmacological treatment option to reduce AKI in patients receiving cisplatin remains unavailable. This has been predominately linked to the incomplete understanding of CIAKI pathophysiology and molecular mechanisms involved. Herein, we detail the extensively known pathophysiology of cisplatin-induced nephrotoxicity that manifests and the variety of pharmacological and genetic alteration studies that target them.
Collapse
|
14
|
Guerrero-Hue M, Rayego-Mateos S, Vázquez-Carballo C, Palomino-Antolín A, García-Caballero C, Opazo-Rios L, Morgado-Pascual JL, Herencia C, Mas S, Ortiz A, Rubio-Navarro A, Egea J, Villalba JM, Egido J, Moreno JA. Protective Role of Nrf2 in Renal Disease. Antioxidants (Basel) 2020; 10:antiox10010039. [PMID: 33396350 PMCID: PMC7824104 DOI: 10.3390/antiox10010039] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) is one of the fastest-growing causes of death and is predicted to become by 2040 the fifth global cause of death. CKD is characterized by increased oxidative stress and chronic inflammation. However, therapies to slow or prevent CKD progression remain an unmet need. Nrf2 (nuclear factor erythroid 2-related factor 2) is a transcription factor that plays a key role in protection against oxidative stress and regulation of the inflammatory response. Consequently, the use of compounds targeting Nrf2 has generated growing interest for nephrologists. Pre-clinical and clinical studies have demonstrated that Nrf2-inducing strategies prevent CKD progression and protect from acute kidney injury (AKI). In this article, we review current knowledge on the protective mechanisms mediated by Nrf2 against kidney injury, novel therapeutic strategies to induce Nrf2 activation, and the status of ongoing clinical trials targeting Nrf2 in renal diseases.
Collapse
Affiliation(s)
- Melania Guerrero-Hue
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain; (M.G.-H.); (S.R.-M.); (C.G.-C.); (J.L.M.-P.)
| | - Sandra Rayego-Mateos
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain; (M.G.-H.); (S.R.-M.); (C.G.-C.); (J.L.M.-P.)
| | - Cristina Vázquez-Carballo
- Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain; (C.V.-C.); (L.O.-R.); (C.H.); (S.M.); (A.O.); (J.E.)
| | - Alejandra Palomino-Antolín
- Research Unit, Hospital Universitario Santa Cristina, IIS-Hospital Universitario de la Princesa, 28006 Madrid, Spain; (A.P.-A.); (J.E.)
- Departament of Pharmacology and Therapeutics, Medicine Faculty, Instituto Teófilo Hernando, Autónoma University, 28029 Madrid, Spain
| | - Cristina García-Caballero
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain; (M.G.-H.); (S.R.-M.); (C.G.-C.); (J.L.M.-P.)
| | - Lucas Opazo-Rios
- Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain; (C.V.-C.); (L.O.-R.); (C.H.); (S.M.); (A.O.); (J.E.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain
| | - José Luis Morgado-Pascual
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain; (M.G.-H.); (S.R.-M.); (C.G.-C.); (J.L.M.-P.)
| | - Carmen Herencia
- Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain; (C.V.-C.); (L.O.-R.); (C.H.); (S.M.); (A.O.); (J.E.)
| | - Sebastián Mas
- Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain; (C.V.-C.); (L.O.-R.); (C.H.); (S.M.); (A.O.); (J.E.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain
| | - Alberto Ortiz
- Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain; (C.V.-C.); (L.O.-R.); (C.H.); (S.M.); (A.O.); (J.E.)
- Red Nacional Investigaciones Nefrológicas (REDINREN), 28040 Madrid, Spain
| | - Alfonso Rubio-Navarro
- Weill Center for Metabolic Health and Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Javier Egea
- Research Unit, Hospital Universitario Santa Cristina, IIS-Hospital Universitario de la Princesa, 28006 Madrid, Spain; (A.P.-A.); (J.E.)
- Departament of Pharmacology and Therapeutics, Medicine Faculty, Instituto Teófilo Hernando, Autónoma University, 28029 Madrid, Spain
| | - José Manuel Villalba
- Department of Cell Biology, Physiology, and Immunology, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, 14014 Cordoba, Spain;
| | - Jesús Egido
- Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain; (C.V.-C.); (L.O.-R.); (C.H.); (S.M.); (A.O.); (J.E.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain
| | - Juan Antonio Moreno
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain; (M.G.-H.); (S.R.-M.); (C.G.-C.); (J.L.M.-P.)
- Department of Cell Biology, Physiology, and Immunology, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, 14014 Cordoba, Spain;
- Hospital Universitario Reina Sofia, 14004 Cordoba, Spain
- Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-957-218-039
| |
Collapse
|
15
|
Fu CY, Chen J, Lu XY, Zheng MZ, Wang LL, Shen YL, Chen YY. Dimethyl fumarate attenuates lipopolysaccharide-induced mitochondrial injury by activating Nrf2 pathway in cardiomyocytes. Life Sci 2019; 235:116863. [PMID: 31513817 DOI: 10.1016/j.lfs.2019.116863] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/02/2019] [Accepted: 09/09/2019] [Indexed: 12/31/2022]
Abstract
AIMS To determine whether dimethyl fumarate (DMF) can protect against lipopolysaccharide (LPS) -induced myocardial injury. MAIN METHODS H9c2 cells pretreated with or without DMF were stimulated with LPS. Cell viability and apoptosis were evaluated. Nrf2 and HO-1 expression were detected using Western blotting. Mitochondrial morphology, mitochondrial superoxide production were observed using confocal microscope. Mitochondrial respiration function was measured using Seahorse bioanalyzer. KEY FINDINGS (1) The cell viability decreased, LDH release and apoptosis increased in LPS- challenged H9c2 cells. DMF pretreatment brought a higher cell viability, and a lower LDH leakage and apoptosis than those of LPS group (P < 0.01). (2) DMF pretreatment resulted in an increased Nrf2 and HO-1 expression, and enhanced nuclear Nrf2 level in LPS-challenged cells (P < 0.01). (3) Nrf2-siRNA could inhibit DMF-induced enhancement of HO-1 expression and cell viability, and partly abolish DMF-induced reduction of LDH leakage and apoptosis. (4) ERK1/2 inhibitor PD98059 could not only prevent the DMF-induced enhancement of nuclear Nrf2 and HO-1, but also inhibit DMF-induced increase in cell viability. (5) Compared with LPS-challenged cells, DMF pretreatment caused a lower production of mitochondrial superoxide and a higher mitochondrial membrane potential, which could be abolished by Nrf2-siRNA. (6) DMF could attenuate LPS-induced mitochondrial fragmentation and improve mitochondrial respiration function by enhancement of the oxygen consumption rate of basal respiration and ATP production in LPS-challenged cells (P < 0.01). SIGNIFICANCE DMF protects cardiomyocytes against LPS-induced damage. ERK1/2-dependent activation of Nrf2/HO-1 pathway is responsible for DMF-induced cardioprotection via reduction of oxidative stress, improvement of mitochondrial morphology and energy metabolism.
Collapse
Affiliation(s)
- Chun-Yan Fu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jun Chen
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiao-Yang Lu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ming-Zhi Zheng
- Department of Pharmacology, Hangzhou Medical College, Hangzhou 310053, China
| | - Lin-Lin Wang
- Center for Stem Cell and Tissue Engineering, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yue-Liang Shen
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Ying-Ying Chen
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
16
|
Koike N, Sasaki A, Murakami T, Suzuki K. Effect of edaravone against cisplatin-induced chronic renal injury. Drug Chem Toxicol 2019; 44:437-446. [PMID: 31064223 DOI: 10.1080/01480545.2019.1604740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cisplatin has been widely used as an anticancer agent for a wide range of tumors, but it had nephrotoxicity that was mainly caused by oxidative stress. Edaravone, a free radical scavenger, has reportedly been validated to have a protective effect against renal injury induced by reactive oxygen species. However, most of these reports are against AKI, and few studies have examined the effect of chronic renal injury. In this study, we investigate the effect of edaravone on cisplatin nephropathy in the chronic phase. Twenty-five male Wistar rats were divided into five groups: control, cisplatin, cisplatin + edaravone 1 mg kg-1, cisplatin + edaravone 10 mg kg-1, and cisplatin + edaravone 100 mg kg-1. Edaravone was administrated intraperitoneally every other day for 5 weeks, starting 1 week before cisplatin administration (6 mg kg-1, i.p.). As a result, proximal tubule injury, interstitial fibrosis, and mononuclear cell infiltration were ameliorated histologically in the group of rats treated with high edaravone dose. In the cisplatin group, the number of α-SMA-, CD68-, and CD3-positive cells increased markedly compared with the Control group, but these numbers were significantly decreased by higher doses of co-administered edaravone. While there was no clear mRNA expression variation in antioxidant enzymes, the apoptosis-promoting factors, caspase8, were markedly reduced in the high-dose edaravone co-administration group compared with the cisplatin group. In conclusion, our results suggested that cisplatin-induced renal injury in the chronic phase was ameliorated by edaravone.
Collapse
Affiliation(s)
- Natsumi Koike
- Laboratory of Veterinary Toxicology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ayaka Sasaki
- Laboratory of Veterinary Toxicology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tomoaki Murakami
- Laboratory of Veterinary Toxicology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kazuhiko Suzuki
- Laboratory of Veterinary Toxicology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|