1
|
Moon JH, Roh HS, Park YJ, Song HH, Choi J, Jung DW, Park SJ, Park HJ, Park SH, Kim DE, Kim G, Auh JH, Bhang DH, Lee HJ, Lee DY. A three-dimensional mouse liver organoid platform for assessing EDCs metabolites simulating liver metabolism. ENVIRONMENT INTERNATIONAL 2025; 195:109184. [PMID: 39798515 DOI: 10.1016/j.envint.2024.109184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/23/2024] [Accepted: 12/03/2024] [Indexed: 01/15/2025]
Abstract
Hepatic metabolism is an important process for evaluate the potential activity and toxicity of endocrine disrupting chemicals (EDCs) metabolites. Organization for Economic Co-operation and Development (OECD) has advocated the development of in vitro assays that mimic in vivo hepatic metabolism to eventually replace classical animal tests. In response to this need, we established a 3D mouse liver organoid (mLO) platform that mimics the animal model and is distinct from existing models. We evaluated the effects the activity of EDC metabolites generated through mLOs based on human cell-based reporter gene assays in addition to existing models. This study emphasizes the importance of hepatic ex-vivo and suggests the need a new metabolic model through a 3D mLOs platform. These results indicate that mLOs provides a novel biological method to screen for potential endocrine-disrupting activities of EDC metabolites.
Collapse
Affiliation(s)
- Ji Hyun Moon
- Department of Agricultural Biotechnology, Seoul National University, Seoul 00826, Republic of Korea
| | - Hyun-Soo Roh
- Department of Molecular and Cellular Biology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi 16419, Republic of Korea; Attislab Inc., Anyang, Gyeonggi-Do 14059, Republic of Korea
| | - Young Jae Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul 00826, Republic of Korea
| | - Hyun Ho Song
- Department of Agricultural Biotechnology, Seoul National University, Seoul 00826, Republic of Korea
| | - Jieun Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul 00826, Republic of Korea
| | - Da Woon Jung
- Department of Agricultural Biotechnology, Seoul National University, Seoul 00826, Republic of Korea
| | - Soo Jin Park
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ho Jin Park
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - So-Hyeon Park
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, South Korea
| | - Da-Eun Kim
- Department of Molecular and Cellular Biology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi 16419, Republic of Korea
| | - Gahee Kim
- Department of Molecular and Cellular Biology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi 16419, Republic of Korea; Attislab Inc., Anyang, Gyeonggi-Do 14059, Republic of Korea
| | - Joong-Hyuck Auh
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, South Korea
| | - Dong Ha Bhang
- Department of Molecular and Cellular Biology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi 16419, Republic of Korea; Attislab Inc., Anyang, Gyeonggi-Do 14059, Republic of Korea
| | - Hong Jin Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, South Korea
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 00826, Republic of Korea; Department of Food and Animal Biotechnology, Seoul National University, Seoul 00826, Republic of Korea; Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Interdisciplinary Programs in Agricultural Genomics, Seoul National University, Seoul 00826, Republic of Korea; Green Bio Science & Technology, Bio-Food Industrialization, Seoul National University, 1447 Pyeongchang-daero, Daehwa-myeon, Pyeongchang-gun, Gangwon-do 25354, Republic of Korea.
| |
Collapse
|
2
|
Si C, Nickerson K, Simmons T, Denton P, Nichols MR, Dysko RC, Hoenerhoff M, Mani R, Woods C, Henderson KS, Freeman ZT. Next-Generation Sequencing-Based Identification of Enterobacter hormaechei as Causative Agent of High Mortality Disease in NOD.Cg- PrkdcscidIl2rgtm1Wjl/SzJ (NSG) Mice. Toxicol Pathol 2024; 52:67-80. [PMID: 38477038 DOI: 10.1177/01926233241231286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice, lacking many components of a mature immune system, are at increased risk of disease. General understanding of potential pathogens of these mice is limited. We describe a high mortality disease outbreak caused by an opportunistic bacterial infection in NSG mice. Affected animals exhibited perianal fecal staining, dehydration, and wasting. Histopathologic lesions included a primary necrotizing enterocolitis, with inflammatory and necrotizing lesions also occurring in the liver, kidneys, heart, and brain of some mice. All affected individuals tested negative for known opportunistic pathogens of immunodeficient mice. We initially identified a member of Enterobacter cloacae complex (ECC) in association with the outbreak by traditional diagnostics. ECC was cultured from extraintestinal organs, both with and without histopathologic lesions, suggesting bacteremia. Infrared spectroscopy and MALDI-TOF mass spectrometry demonstrated that isolates from the outbreak shared molecular features and likely a common origin. We subsequently hypothesized that advanced sequencing methods would identify a single species of ECC associated with clinical disease. Using a novel targeted amplicon-based next-generation sequencing assay, we identified Enterobacter hormaechei in association with this outbreak. Knowledge of this organism as a potential opportunistic pathogen in NSG mice is critical for preclinical studies to prevent loss of animals and confounding of research.
Collapse
Affiliation(s)
- Catherine Si
- University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | | - Rinosh Mani
- Michigan State University, East Lansing, Michigan, USA
| | - Cheryl Woods
- Charles River Laboratories, Wilmington, Massachusetts, USA
| | | | | |
Collapse
|