1
|
Huang S, Xing M, Wang H. Comparative analysis of antibiotic resistance genes between fresh pig manure and composted pig manure in winter, China. PLoS One 2025; 20:e0317827. [PMID: 39879247 PMCID: PMC11778642 DOI: 10.1371/journal.pone.0317827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 01/06/2025] [Indexed: 01/31/2025] Open
Abstract
Antibiotic resistance is a critical global public health issue. The gut microbiome acts as a reservoir for numerous antibiotic resistance genes (ARGs), which influence both existing and future microbial populations within a community or ecosystem. However, the differences in ARG expression between fresh and composted feces remain poorly understood. In this study, we collected eight samples from a farm in Kaifeng City, China, comprising both fresh and composted pig manure. Using a high-throughput quantitative PCR array, we analyzed differences in ARG expression between these two types of manure. Our findings revealed significant differences in ARG profiles, as demonstrated by principal coordinate analysis (PCoA). Further analysis identified 39 ARGs (log2FC > 1, p < 0.05) in composted pig manure, with 25 genes downregulated and 14 upregulated. Notably, tetB-01, blaOCH, and blaOXY were the most abundant in composted pig manure compared to fresh manure. Additionally, 16S rRNA species profiling revealed that the composting process significantly altered the microbial community structure, with an increased abundance of Firmicutes and a decreased abundance of Bacteroidetes in composted pig manure. In summary, composting substantially transforms both the microbial community structure and the ARG profile in pig manure, underscoring its potential role in modulating the dynamics of ARGs in agricultural environments.
Collapse
Affiliation(s)
- Shuai Huang
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Kaifeng Key Laboratory of Food Composition and Quality Assessment, Kaifeng, China
| | - Minghui Xing
- School of Life Sciences, Henan University, Kaifeng, China
| | - Haifeng Wang
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Kaifeng Key Laboratory of Food Composition and Quality Assessment, Kaifeng, China
| |
Collapse
|
2
|
Romero-Rodríguez A, Ruíz-Villafán B, Sánchez S, Paredes-Sabja D. Is there a role for intestinal sporobiota in the antimicrobial resistance crisis? Microbiol Res 2024; 288:127870. [PMID: 39173554 DOI: 10.1016/j.micres.2024.127870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 08/24/2024]
Abstract
Antimicrobial resistance (AMR) is a complex issue requiring specific, multi-sectoral measures to slow its spread. When people are exposed to antimicrobial agents, it can cause resistant bacteria to increase. This means that the use, misuse, and excessive use of antimicrobial agents exert selective pressure on bacteria, which can lead to the development of "silent" reservoirs of antimicrobial resistance genes. These genes can later be mobilized into pathogenic bacteria and contribute to the spread of AMR. Many socioeconomic and environmental factors influence the transmission and dissemination of resistance genes, such as the quality of healthcare systems, water sanitation, hygiene infrastructure, and pollution. The sporobiota is an essential part of the gut microbiota that plays a role in maintaining gut homeostasis. However, because spores are highly transmissible and can spread easily, they can be a vector for AMR. The sporobiota resistome, particularly the mobile resistome, is important for tracking, managing, and limiting the spread of antimicrobial resistance genes among pathogenic and commensal bacterial species.
Collapse
Affiliation(s)
- A Romero-Rodríguez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Ciudad de México 04510, Mexico.
| | - B Ruíz-Villafán
- Laboratorio de Microbiología Industrial. Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - S Sánchez
- Laboratorio de Microbiología Industrial. Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - D Paredes-Sabja
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
3
|
Iwan E, Grenda A, Bomba A, Bielińska K, Wasyl D, Kieszko R, Rolska-Kopińska A, Chmielewska I, Krawczyk P, Rybczyńska-Tkaczyk K, Olejnik M, Milanowski J. Gut resistome of NSCLC patients treated with immunotherapy. Front Genet 2024; 15:1378900. [PMID: 39170692 PMCID: PMC11335565 DOI: 10.3389/fgene.2024.1378900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024] Open
Abstract
Background The newest method of treatment for patients with NSCLC (non-small cell lung cancer) is immunotherapy directed at the immune checkpoints PD-1 (Programmed Cell Death 1) and PD-L1 (Programmed Cell Death Ligand 1). PD-L1 is the only validated predictor factor for immunotherapy efficacy, but it is imperfect. Some patients do not benefit from immunotherapy and may develop primary or secondary resistance. This study aimed to assess the intestinal resistome composition of non-small cell lung cancer (NSCLC) patients treated with immune checkpoint inhibitors in the context of clinical features and potentially new prediction factors for assessing immunotherapy efficacy. Methods The study included 30 advanced NSCLC patients, 19 (57%) men and 11 (33%) women treated with first- or second-line immunotherapy (nivolumab, pembrolizumab or atezolizumab). We evaluated the patient's gut resistome composition using the high sensitivity of targeted metagenomics. Results Studies have shown that resistome richness is associated with clinical and demographic factors of NSCLC patients treated with immunotherapy. Smoking seems to be associated with an increased abundance of macrolides, lincosamides, streptogramins and vancomycin core resistome. The resistome of patients with progression disease appears to be more abundant and diverse, with significantly higher levels of genomic markers of resistance to lincosamides (lnuC). The resistance genes lnuC, msrD, ermG, aph(6), fosA were correlated with progression-free survival or/and overall survival, thus may be considered as factors potentially impacting the disease. Conclusion The results indicate that the intestinal resistome of NSCLC patients with immune checkpoint inhibitors treatment differs depending on the response to immunotherapy, with several distinguished markers. Since it might impact treatment efficacy, it must be examined more deeply.
Collapse
Affiliation(s)
- Ewelina Iwan
- Department of Omics Analyses, National Veterinary Research Institute, Pulawy, Poland
| | - Anna Grenda
- Department of Pneumology, Oncology and Allergology, Medical University in Lublin, Lublin, Poland
| | - Arkadiusz Bomba
- Department of Omics Analyses, National Veterinary Research Institute, Pulawy, Poland
| | - Katarzyna Bielińska
- Department of Omics Analyses, National Veterinary Research Institute, Pulawy, Poland
| | - Dariusz Wasyl
- Department of Omics Analyses, National Veterinary Research Institute, Pulawy, Poland
| | - Robert Kieszko
- Department of Pneumology, Oncology and Allergology, Medical University in Lublin, Lublin, Poland
| | - Anna Rolska-Kopińska
- Department of Pneumology, Oncology and Allergology, Medical University in Lublin, Lublin, Poland
| | - Izabela Chmielewska
- Department of Pneumology, Oncology and Allergology, Medical University in Lublin, Lublin, Poland
| | - Paweł Krawczyk
- Department of Pneumology, Oncology and Allergology, Medical University in Lublin, Lublin, Poland
| | | | - Małgorzata Olejnik
- Department of Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Janusz Milanowski
- Department of Pneumology, Oncology and Allergology, Medical University in Lublin, Lublin, Poland
| |
Collapse
|
4
|
Mac Aogáin M, Lau KJX, Cai Z, Kumar Narayana J, Purbojati RW, Drautz-Moses DI, Gaultier NE, Jaggi TK, Tiew PY, Ong TH, Siyue Koh M, Lim Yick Hou A, Abisheganaden JA, Tsaneva-Atanasova K, Schuster SC, Chotirmall SH. Metagenomics Reveals a Core Macrolide Resistome Related to Microbiota in Chronic Respiratory Disease. Am J Respir Crit Care Med 2020; 202:433-447. [PMID: 32320621 PMCID: PMC7397787 DOI: 10.1164/rccm.201911-2202oc] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/22/2020] [Indexed: 12/16/2022] Open
Abstract
Rationale: Long-term antibiotic use for managing chronic respiratory disease is increasing; however, the role of the airway resistome and its relationship to host microbiomes remains unknown.Objectives: To evaluate airway resistomes and relate them to host and environmental microbiomes using ultradeep metagenomic shotgun sequencing.Methods: Airway specimens from 85 individuals with and without chronic respiratory disease (severe asthma, chronic obstructive pulmonary disease, and bronchiectasis) were subjected to metagenomic sequencing to an average depth exceeding 20 million reads. Respiratory and device-associated microbiomes were evaluated on the basis of taxonomical classification and functional annotation including the Comprehensive Antibiotic Resistance Database to determine airway resistomes. Co-occurrence networks of gene-microbe association were constructed to determine potential microbial sources of the airway resistome. Paired patient-inhaler metagenomes were compared (n = 31) to assess for the presence of airway-environment overlap in microbiomes and/or resistomes.Measurements and Main Results: Airway metagenomes exhibit taxonomic and metabolic diversity and distinct antimicrobial resistance patterns. A "core" airway resistome dominated by macrolide but with high prevalence of β-lactam, fluoroquinolone, and tetracycline resistance genes exists and is independent of disease status or antibiotic exposure. Streptococcus and Actinomyces are key potential microbial reservoirs of macrolide resistance including the ermX, ermF, and msrD genes. Significant patient-inhaler overlap in airway microbiomes and their resistomes is identified where the latter may be a proxy for airway microbiome assessment in chronic respiratory disease.Conclusions: Metagenomic analysis of the airway reveals a core macrolide resistome harbored by the host microbiome.
Collapse
Affiliation(s)
| | - Kenny J. X. Lau
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Zhao Cai
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | | | - Rikky W. Purbojati
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Daniela I. Drautz-Moses
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Nicolas E. Gaultier
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | | | - Pei Yee Tiew
- Lee Kong Chian School of Medicine and
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
| | - Thun How Ong
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
| | - Mariko Siyue Koh
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
| | - Albert Lim Yick Hou
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore; and
| | - John A. Abisheganaden
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore; and
| | - Krasimira Tsaneva-Atanasova
- Department of Mathematics, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom
| | - Stephan C. Schuster
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | | |
Collapse
|
5
|
Xu F, Chen J, Xiao C, Cong F, Ma L, Moore RJ, Huang R, Guo P. Development of a Luminex xTAG Assay for the Rapid Detection of Five Aminoglycoside Resistance Genes Both in Staphylococci and Enterococci. Microb Drug Resist 2019; 25:874-879. [DOI: 10.1089/mdr.2018.0297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Fengjiao Xu
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Jinhe Chen
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Cuiyan Xiao
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Feng Cong
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Lei Ma
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | | | - Ren Huang
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Pengju Guo
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| |
Collapse
|
6
|
Markley JL, Wencewicz TA. Tetracycline-Inactivating Enzymes. Front Microbiol 2018; 9:1058. [PMID: 29899733 PMCID: PMC5988894 DOI: 10.3389/fmicb.2018.01058] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/04/2018] [Indexed: 12/25/2022] Open
Abstract
Tetracyclines have been foundational antibacterial agents for more than 70 years. Renewed interest in tetracycline antibiotics is being driven by advancements in tetracycline synthesis and strategic scaffold modifications designed to overcome established clinical resistance mechanisms including efflux and ribosome protection. Emerging new resistance mechanisms, including enzymatic antibiotic inactivation, threaten recent progress on bringing these next-generation tetracyclines to the clinic. Here we review the current state of knowledge on the structure, mechanism, and inhibition of tetracycline-inactivating enzymes.
Collapse
Affiliation(s)
- Jana L Markley
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, United States
| | - Timothy A Wencewicz
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|