1
|
Nazari A, Ramezanzadeh B, Guo L, Dehghani A. Application of green active bio-molecules from the aquatic extract of Mint leaves for steel corrosion control in hydrochloric acid (1 M) solution; Surface, electrochemical thermodynamic, and theoretical explorations. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
2
|
Ben Slima S, Ktari N, chouikhi A, Trabelsi I, Hzami A, Taktak MA, Msaddak L, Ben Salah R. Antioxidant activities, functional properties, and application of a novel Lepidium sativum polysaccharide in the formulation of cake. Food Sci Nutr 2022; 10:822-832. [PMID: 35311160 PMCID: PMC8907738 DOI: 10.1002/fsn3.2713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 11/11/2022] Open
Abstract
A novel heteropolysaccharide, named cress water soluble polysaccharide (CWSP), was purified from Lepidium sativum seeds. Antioxidant activities and functional properties were characterized thermally using thermal gravimetric analysis (TGA), and the differential scanning calorimeter (DSC) results of CWSP were evaluated. The total antioxidant capacity and the metal chelating activities of CWSP at 3 mg/ml were equivalent to 116.34 µg ascorbic acid and 62.57%, respectively. As for the CWSP that was used for the production of cakes, it was thermally stable, and it presented high water (WHC) and oil holding (OHC) capacities and good emulsion properties. The samples were prepared with different levels of CWSP (0.1. 0.3, and 0.5%) and analyzed during 15 days of storage at room temperature. The obtained results indicated that the addition of CWSP had a significant effect on the texture profile, leading to the increase in all parameters in terms of hardness, springiness, cohesiveness, adhesiveness, and chewiness. Moreover, the reformulation samples presented higher a* and lower L* and b* than the control sample. The sensory evaluation showed that the formulation of cake with 0.3% of CWSP was the most acceptable. Therefore, CWSP was shown to be a new alternative for improving the quality attributes, indicating potent antioxidant activities on the shelf life during the storage of bakery foods.
Collapse
Affiliation(s)
- Sirine Ben Slima
- Laboratory of Biotechnology Microbial Enzymatic and Biomolecules (LBMEB)Center of Biotechnology of SfaxSfaxTunisia
| | - Naourez Ktari
- Laboratory of Enzyme Engineering and MicrobiologyNational School of Engineering of Sfax (ENIS)SfaxTunisia
- Department of Life SciencesFaculty of Science of GabesGabesTunisia
| | - Aicha chouikhi
- Laboratory of Biotechnology Microbial Enzymatic and Biomolecules (LBMEB)Center of Biotechnology of SfaxSfaxTunisia
| | - Imen Trabelsi
- Laboratory of Biotechnology Microbial Enzymatic and Biomolecules (LBMEB)Center of Biotechnology of SfaxSfaxTunisia
| | - Amina Hzami
- Laboratory of Biotechnology Microbial Enzymatic and Biomolecules (LBMEB)Center of Biotechnology of SfaxSfaxTunisia
| | | | | | - Riadh Ben Salah
- Laboratory of Biotechnology Microbial Enzymatic and Biomolecules (LBMEB)Center of Biotechnology of SfaxSfaxTunisia
| |
Collapse
|
3
|
Microencapsulated and Lyophilized Propolis Co-Product Extract as Antioxidant Synthetic Replacer on Traditional Brazilian Starch Biscuit. Molecules 2021; 26:molecules26216400. [PMID: 34770809 PMCID: PMC8587645 DOI: 10.3390/molecules26216400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/10/2021] [Accepted: 10/17/2021] [Indexed: 12/18/2022] Open
Abstract
The residue from commercial propolis extraction may have significant antioxidant power in food technology. However, among the challenges for using the propolis co-product as an inhibitor of lipid oxidation (LO) in baked goods is maintaining its bioactive compounds. Therefore, this study aimed to determine the propolis co-product extracts’ capability to reduce LO in starch biscuit formulated with canola oil and stored for 45 days at 25 °C. Two co-product extracts were prepared: microencapsulated propolis co-product (MECP) (with maltodextrin) and lyophilized propolis co-product (LFCP), which were subjected to analysis of their total phenolic content and antioxidant activity (AA). Relevant antioxidant activity was observed using the methods of analysis employed. The spray-drying microencapsulation process showed an efficiency of 63%. The LO in the biscuits was determined by the thiobarbituric acid reactive substances (TBARS) test and fatty acid composition by gas chromatography analysis. Palmitic, stearic, oleic, linoelaidic, linoleic, and α-linolenic acids were found in biscuits at constant concentrations throughout the storage period. In addition, there was a reduction in malondialdehyde values with the addition of both propolis co-product extracts. Therefore, the propolis co-product extracts could be utilized as a natural antioxidant to reduce lipid oxidation in fatty starch biscuit.
Collapse
|
4
|
Biscuits Polyphenol Content Fortification through Herbs and Grape Seed Flour Addition. Processes (Basel) 2021. [DOI: 10.3390/pr9081455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The study aimed to verify whether the addition of selected herbs and spices will affect the content of polyphenols in biscuits and their antioxidant capacity, as well as what impact it will have on their sensory properties and attractiveness to consumers. Ground cloves, cinnamon, mint, and grape flour were added to the biscuits in concentrations of 1.0, 3.0, 5.0, and 10.0%. The total content of polyphenols in spices and biscuit samples was determined using the Folin–Ciocalteau solution and, subsequently, the antioxidant capacity was measured by FRAP (ferric ion reducing antioxidant power) and DPPH (2,2-diphenyl-1-picrylhydrazyl inhibition). Polyphenols were transferred through spices and herbs into the biscuits in all samples and thus their antioxidant capacity was increased. The antioxidant capacity of the control sample measured by the DPPH method was 15.41%, and by the FRAP method 1.02 μmol Trolox/g. There was an increase in antioxidant capacity in all samples with the addition of spices and herbs. The highest increase was recorded in the sample with cloves, namely with the addition of 10% of cloves there was an increase measured by the DPPH method to 92.6% and by the FRAP method to 208.42 μmol Trolox/g. This also corresponds to the measured TPC (Total Polyphenol Content) in the pure clove, which was 219.09 mg GAE/g, and in the samples where the content gradually grew up to 4.51 mg GAE/g in the sample with the addition of 10%, while the polyphenol content of the control sample was 0.2 mg GAE/g. For other parameters, changes were also observed, depending on the addition of spices/herbs. There was a reduction in both texture parameters, hardness and fracturability, depending on the addition of spices/herbs, which was confirmed by both instrumental measurements and sensory analysis. Colour measurements clearly separated the control from the fortified samples, thus confirming the colour changes. The addition of grape flour shows the smallest difference from the control when the overall impression does not change with the addition. In terms of the combination of increased antioxidant capacity and overall consumer acceptability, the addition of cloves at a concentration of 3.0% appears to be the best option.
Collapse
|
5
|
Antioxidant, Antimicrobial and Antiviral Properties of Herbal Materials. Antioxidants (Basel) 2020; 9:antiox9121309. [PMID: 33371338 PMCID: PMC7767362 DOI: 10.3390/antiox9121309] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 01/07/2023] Open
Abstract
Recently, increasing public concern about hygiene has been driving many studies to investigate antimicrobial and antiviral agents. However, the use of any antimicrobial agents must be limited due to their possible toxic or harmful effects. In recent years, due to previous antibiotics' lesser side effects, the use of herbal materials instead of synthetic or chemical drugs is increasing. Herbal materials are found in medicines. Herbs can be used in the form of plant extracts or as their active components. Furthermore, most of the world's populations used herbal materials due to their strong antimicrobial properties and primary healthcare benefits. For example, herbs are an excellent material to replace nanosilver as an antibiotic and antiviral agent. The use of nanosilver involves an ROS-mediated mechanism that might lead to oxidative stress-related cancer, cytotoxicity, and heart diseases. Oxidative stress further leads to increased ROS production and also delays the cellular processes involved in wound healing. Therefore, existing antibiotic drugs can be replaced with biomaterials such as herbal medicine with high antimicrobial, antiviral, and antioxidant activity. This review paper highlights the antibacterial, antiviral, and radical scavenger (antioxidant) properties of herbal materials. Antimicrobial activity, radical scavenger ability, the potential for antimicrobial, antiviral, and anticancer agents, and efficacy in eliminating bacteria and viruses and scavenging free radicals in herbal materials are discussed in this review. The presented herbal antimicrobial agents in this review include clove, portulaca, tribulus, eryngium, cinnamon, turmeric, ginger, thyme, pennyroyal, mint, fennel, chamomile, burdock, eucalyptus, primrose, lemon balm, mallow, and garlic, which are all summarized.
Collapse
|
6
|
Salehi B, Stojanović-Radić Z, Matejić J, Sharopov F, Antolak H, Kręgiel D, Sen S, Sharifi-Rad M, Acharya K, Sharifi-Rad R, Martorell M, Sureda A, Martins N, Sharifi-Rad J. Plants of Genus Mentha: From Farm to Food Factory. PLANTS (BASEL, SWITZERLAND) 2018; 7:E70. [PMID: 30181483 PMCID: PMC6161068 DOI: 10.3390/plants7030070] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 01/16/2023]
Abstract
Genus Mentha, a member of Lamiaceae family, encompasses a series of species used on an industrial scale and with a well-described and developed culture process. Extracts of this genus are traditionally used as foods and are highly valued due to the presence of significant amounts of antioxidant phenolic compounds. Many essential oil chemotypes show distinct aromatic flavor conferred by different terpene proportions. Mint extracts and their derived essential oils exert notable effects against a broad spectrum of bacteria, fungi or yeasts, tested both in vitro or in various food matrices. Their chemical compositions are well-known, which suggest and even prompt their safe use. In this review, genus Mentha plant cultivation, phytochemical analysis and even antimicrobial activity are carefully described. Also, in consideration of its natural origin, antioxidant and antimicrobial properties, a special emphasis was given to mint-derived products as an interesting alternative to artificial preservatives towards establishing a wide range of applications for shelf-life extension of food ingredients and even foodstuffs. Mentha cultivation techniques markedly influence its phytochemical composition. Both extracts and essential oils display a broad spectrum of activity, closely related to its phytochemical composition. Therefore, industrial implementation of genus Mentha depends on its efficacy, safety and neutral taste.
Collapse
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran.
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran.
| | - Zorica Stojanović-Radić
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia.
| | - Jelena Matejić
- Department of Pharmacy, Faculty of Medicine, University of Niš, Boulevard Dr Zorana Đinđića 81, 18000 Niš, Serbia.
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe 734003, Tajikistan.
| | - Hubert Antolak
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, 90-924 Łódź, Poland.
| | - Dorota Kręgiel
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, 90-924 Łódź, Poland.
| | - Surjit Sen
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, Centre of Advanced Study, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India.
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, Zabol University of Medical Sciences, Zabol 61663335, Iran.
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, Centre of Advanced Study, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India.
| | - Razieh Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615585, Iran.
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, 4070386 VIII-Bio Bio Region, Chile.
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress and CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, 07122 Palma de Mallorca, Spain.
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal.
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran.
- Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, Winnipeg, MB R3B 2E9, Canada.
| |
Collapse
|