1
|
Liu X, Chen X, Xu C, Lou J, Weng Y, Tang L. Platelet protects angiotensin II-driven abdominal aortic aneurysm formation through inhibition of inflammation. Exp Gerontol 2022; 159:111703. [PMID: 35038567 DOI: 10.1016/j.exger.2022.111703] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 01/16/2023]
Abstract
BACKGROUND Inflammation is the primary cause of abdominal aortic aneurysm (AAA) formation and development. It has been reported that platelets protect against septic shock by inhibiting inflammation. However, it is unclear whether platelets protect AAA progress via suppressing inflammation. METHODS A mouse model of AAA was established by a daily administration of angiotensin II (Ang II, 1000 ng/kg/min) for 28-day. The AAA mice received 1 × 109 platelets transfusion in normal saline every 3rd day for 1 month. Hematoxylin and eosin, Masson's trichrome, and elastic van Gieson staining techniques were used to analyze the morphology of the abdominal aorta. Immunohistochemistry was used to detect any infiltration of inflammatory cells, inflammatory factors, and matrix metalloproteins (MMPs) in the aortic tissue. Western blot and enzyme-linked immunosorbent assay (ELISA) were used to examine the inflammatory factor proteins levels in the aortic wall and peripheral blood, respectively. RESULTS Platelets infusion significantly suppressed the Ang II-driven elevation of aortic diameter, AAA formation (52.38% decrease, P < 0.05), aortic expansion, elastic lamina destruction, and inflammatory response. In addition, MMP-2 and MMP-9 production were also reduced by platelets transfusion. CONCLUSIONS For the first time, our study reported the beneficial effect of platelet transfusion in suppressing the Ang II-driven AAA progress in mice through the inhibition of inflammation.
Collapse
Affiliation(s)
- Xiaowei Liu
- Department of Cardiology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, PR China
| | - Xiaofeng Chen
- Department of Cardiology, Taizhou Hospital, Linhai, Zhejiang 317000, PR China
| | - Chen Xu
- Department of Cardiology, Taizhou Hospital, Linhai, Zhejiang 317000, PR China
| | - Jiangjie Lou
- Department of Cardiology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, PR China
| | - Yingzheng Weng
- Department of Cardiology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, PR China
| | - Lijiang Tang
- Department of Cardiology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, PR China.
| |
Collapse
|
2
|
Arun D, Munir W, Schmitt LV, Vyas R, Ravindran JI, Bashir M, Williams IM, Velayudhan B, Idhrees M. Exploring the Correlation and Protective Role of Diabetes Mellitus in Aortic Aneurysm Disease. Front Cardiovasc Med 2021; 8:769343. [PMID: 34820431 PMCID: PMC8606667 DOI: 10.3389/fcvm.2021.769343] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/11/2021] [Indexed: 01/04/2023] Open
Abstract
Introduction: Diabetes mellitus is recognised as a significant risk factor for cardiovascular and peripheral vascular disease, as the abnormal metabolic state increases the risk for atherosclerosis, occlusive arterial disease and vascular dysfunction. There have been reports of potential association across the literature that illustrates a link between diabetes mellitus and aortic aneurysm, with the former having a protective role on the development of the latter. Methods: A thorough literature search was performed through electronic databases, to provide a comprehensive review of the study's reporting on the association of diabetes mellitus and aortic aneurysm, discussing the mechanisms that have been reported; furthemore, we reviewed the reports of the impact of oral hypoglycameic agents on aortic aneurysms. Results: Various proposed mechanisms are involved in this protective process including endothelial dysfunction, chronic hyperglycemia and insulin resistance. The evidence suggests a negative association between these disease process, with prevelance of diabetes mellitus resulting in lower rates of aortic aneurysm, via its protective mechanistic action. The increase in advanced glycation end products, increased arterial stiffness and vascular remodelling seen in diabetes, was found to have a profound impact on aneurysm development, its slow progression and lower rupture rate in these individuals. This review has also highlighted the role of oral hypoglycaemic agents having a protective effect against AA disease. Conclusion: A decrease in development, progression and mortality from aortic aneurysms as well as reduced rates of dissection, have been observed in those with diabetes. This review has provided a comprehensive insight on the effect of diabetes and its physiological processes, and elements of its con-committant treatment, having a protective role against these aortic diseases.
Collapse
Affiliation(s)
- Divyatha Arun
- Department of Endocrinology, Columbia Asia Referral Hospital, A Unit of Manipal Hospital, Yeshwanthpur, Bengaluru, India
| | - Wahaj Munir
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Lara Victoria Schmitt
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Rohan Vyas
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Jeuela Iris Ravindran
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mohamad Bashir
- Institue of Cardiac and Aortic Disorders, SRM Institutes for Medical Science (SIMS Hospitals), Chennai, India
| | | | - Bashi Velayudhan
- Institue of Cardiac and Aortic Disorders, SRM Institutes for Medical Science (SIMS Hospitals), Chennai, India
| | - Mohammed Idhrees
- Institue of Cardiac and Aortic Disorders, SRM Institutes for Medical Science (SIMS Hospitals), Chennai, India
| |
Collapse
|
3
|
Aria H, Kalani M, Hodjati H, Doroudchi M. Different cytokine patterns induced by Helicobacter pylori and Lactobacillus acidophilus extracts in PBMCs of patients with abdominal aortic aneurysm. Comp Immunol Microbiol Infect Dis 2020; 70:101449. [PMID: 32126431 DOI: 10.1016/j.cimid.2020.101449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 01/22/2020] [Accepted: 02/11/2020] [Indexed: 12/28/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a degenerative inflammatory disease with unknown etiology. AAA is characterized by abdominal aortic dilatation more than 3 cm and is often asymptomatic, but the rupture of aneurysm can lead to death. Age, smoking and male sex are major predisposing factors of AAA. This study compares the effect of Helicobacter (H.) pylori and Lactobacillus (L.) acidophilus on the cytokine profile of PBMCs of 5 men with abdominal aortic aneurysm (AAA) and 5 men with normal/insignificant angiography, CT-Scan and ultrasonography results in the single-culture and in the co-culture with HUVECs. IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL-13, IL-17A, IL-17 F, IL-21, IL-22, IFN-γ and TNF-α were measured in culture supernatants using a commercial fluorescent-labeled-bead assay. In general, CagA+ H. pylori-extract induced higher production of IFN-γ, IL-13 and IL-21 by PBMCs. Treatment of patients' PBMCs with CagA+H. pylori-extract induced Th2 cytokines while treatment of controls' PBMCs with CagA+H. pylori-extract increased Th1 cytokines. In the co-culture, however, patients' PBMCs produced Th1 cytokines irrespective of extract treatment, while controls' PBMCs produced Th2 cytokines and decreased IL-10. CagA+ H. pylori- as well as L. acidophilus-extract induced higher levels of IL-9 by controls' PBMCs in co-culture with HUVECs than patients (P = 0.05 and P = 0.01). The cytokine pattern of PBMCs induced by CagA+ H. pylori- and L. acidophilus-extracts in the co-culture with HUVECs shows differences in AAA patients and in comparison to controls. Decreased secretion of IL-9, IL-21 and IL-22 by PBMCs of patients treated with CagA+ H. pylori extract in co-culture, as opposed to non-AAA controls may indicate the active role ECs play in AAA. Simultaneous production of IL-10 and Th1 cytokines in patients and pronounced Th2 cytokines in controls in response to both bacteria may point to the inherent differences between patients and controls, which need further investigation.
Collapse
Affiliation(s)
- Hamid Aria
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Kalani
- Prof. Alborzi Clinical Microbiology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Hodjati
- Department of Vascular Surgery, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Aria H, Kalani M, Hodjati H, Doroudchi M. Elevated levels of IL-6 and IL-9 in the sera of patients with AAA do not correspond to their production by peripheral blood mononuclear cells. Artery Res 2018. [DOI: 10.1016/j.artres.2017.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
5
|
Miner GH, Faries PL, Costa KD, Hanss BG, Marin ML. An update on the etiology of abdominal aortic aneurysms: implications for future diagnostic testing. Expert Rev Cardiovasc Ther 2015; 13:1079-90. [PMID: 26401919 DOI: 10.1586/14779072.2015.1082906] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abdominal aortic aneurysm (AAA) disease is multifactorial with both environmental and genetic risk factors. The current research in AAA revolves around genetic profiles and expression studies in both human and animal models. Variants in genes involved in extracellular matrix degradation, inflammation, the renin-angiotensin system, cell growth and proliferation and lipid metabolism have been associated with AAA using a variety of study designs. However, the results have been inconsistent and without a standard animal model for validation. Thus, despite the growing body of knowledge, the specific variants responsible for AAA development, progression and rupture have yet to be determined. This review explores some of the more significant genetic studies to provide an overview of past studies that have influenced the current understanding of AAA etiology. Expanding our understanding of disease pathogenesis will inform research into novel diagnostics and therapeutics and ultimately to improve outcomes for patients with AAA.
Collapse
Affiliation(s)
- Grace H Miner
- a Icahn school of Medicine at Mount Sinai, New York, USA
| | - Peter L Faries
- a Icahn school of Medicine at Mount Sinai, New York, USA
| | - Kevin D Costa
- a Icahn school of Medicine at Mount Sinai, New York, USA
| | - Basil G Hanss
- a Icahn school of Medicine at Mount Sinai, New York, USA
| | | |
Collapse
|
6
|
Estrelinha M, Hinterseher I, Kuivaniemi H. Gene expression studies in human abdominal aortic aneurysm. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.rvm.2014.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Kuivaniemi H, Ryer EJ, Elmore JR, Hinterseher I, Smelser DT, Tromp G. Update on abdominal aortic aneurysm research: from clinical to genetic studies. SCIENTIFICA 2014; 2014:564734. [PMID: 24834361 PMCID: PMC4009235 DOI: 10.1155/2014/564734] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 02/02/2014] [Indexed: 06/03/2023]
Abstract
An abdominal aortic aneurysm (AAA) is a dilatation of the abdominal aorta with a diameter of at least 3.0 cm. AAAs are often asymptomatic and are discovered as incidental findings in imaging studies or when the AAA ruptures leading to a medical emergency. AAAs are more common in males than females, in individuals of European ancestry, and in those over 65 years of age. Smoking is the most important environmental risk factor. In addition, a positive family history of AAA increases the person's risk for AAA. Interestingly, diabetes has been shown to be a protective factor for AAA in many large studies. Hallmarks of AAA pathogenesis include inflammation, vascular smooth muscle cell apoptosis, extracellular matrix degradation, and oxidative stress. Autoimmunity may also play a role in AAA development and progression. In this Outlook paper, we summarize our recent studies on AAA including clinical studies related to surgical repair of AAA and genetic risk factor and large-scale gene expression studies. We conclude with a discussion on our research projects using large data sets available through electronic medical records and biobanks.
Collapse
Affiliation(s)
- Helena Kuivaniemi
- The Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA, USA
- Department of Surgery, Temple University School of Medicine, Philadelphia, PA, USA
| | - Evan J. Ryer
- Department of Surgery, Temple University School of Medicine, Philadelphia, PA, USA
- Department of Vascular and Endovascular Surgery, Geisinger Health System, Danville, PA, USA
| | - James R. Elmore
- Department of Surgery, Temple University School of Medicine, Philadelphia, PA, USA
- Department of Vascular and Endovascular Surgery, Geisinger Health System, Danville, PA, USA
| | - Irene Hinterseher
- Department of General, Visceral, Vascular and Thoracic Surgery, Charité Universitätsmedizin Berlin, Charité Campus Mitte, Berlin, Germany
| | - Diane T. Smelser
- The Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA, USA
| | - Gerard Tromp
- The Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA, USA
| |
Collapse
|