1
|
Farokhi Larijani S, Hassanzadeh G, Zahmatkesh M, Radfar F, Farahmandfar M. Intranasal insulin intake and exercise improve memory function in amyloid-β induced Alzheimer's-like disease in rats: Involvement of hippocampal BDNF-TrkB receptor. Behav Brain Res 2024; 460:114814. [PMID: 38104636 DOI: 10.1016/j.bbr.2023.114814] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
The most prevalent type of dementia, Alzheimer's disease (AD), is a compelling illustration of the link between cognitive deficits and neurophysiological anomalies. We investigated the possible protective effect of intranasal insulin intake with exercise on amyloid-β (Aβ)-induced neuronal damage. The level of hippocampal brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB) were analyzed to understand the involvement of BDNF-TrkB pathway in this modulation. In this study, we induced AD-like pathology by amyloid-β (Aβ) administration. Then, we examined the impact of a 4-week pretreatment of moderate treadmill exercise and intranasal intake of insulin on working and spatial memory in male Wistar rats. We also analyzed the mechanisms of improved memory and anxiety through changes in the protein level of BDNF and TrkB. Results showed that animals received Aβ had impaired working memory, increased anxiety which were accompanied by lower protein levels of BDNF and TrkB in the hippocampus. The exercise training and intranasal insulin improved working memory deficits, decreased anxiety, and increased BDNF, and TrkB levels in the hippocampus of animals received Aβ. Our finding of improved memory performance after intranasal intake of insulin and exercise may be of significance for the treatment of memory impairments and anxiety-like behavior in AD.
Collapse
Affiliation(s)
- Setare Farokhi Larijani
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Zahmatkesh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Radfar
- Department of Behavioral and Cognitive Sciences in Sports, Sports and Health Sciences Faculty, University of Tehran, Tehran, Iran
| | - Maryam Farahmandfar
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Kim TW, Park SS, Kim SH, Kim MK, Shin MS, Kim SH. Exercise before pregnancy exerts protective effect on prenatal stress-induced impairment of memory, neurogenesis, and mitochondrial function in offspring. J Exerc Rehabil 2024; 20:2-10. [PMID: 38433854 PMCID: PMC10902695 DOI: 10.12965/jer.2448068.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 03/05/2024] Open
Abstract
Stress during pregnancy has a negative effect on the fetus. However, maternal exercise has a positive effect on the cognitive function of the fetus and alleviates the negative effects of stress. This study aimed to demonstrate whether exercise before pregnancy has a protective effect on prenatal stress-induced impairment of memory, neurogenesis and mitochondrial function in mice offspring. In this experiment, immunohistochemistry, Western blot, measurement of mitochondria oxygen respiration, and behavior tests were performed. Spatial memory and short-term memory of the offspring from the prenatal stress with exercise were increased compared to the offspring from the prenatal stress. The numbers of doublecortin-positive and 5-bromo-2'-deoxyuridine-positive cells in the hippocampal dentate gyrus of the offspring from the prenatal stress with exercise were higher compared to the offspring from the prenatal stress. The expressions of brain-derived neurotrophic factor, postsynaptic density 95 kDa, and synaptophysin in the hippocampus of the offspring from the prenatal stress with exercise were enhanced compared to the offspring from the prenatal stress. Oxygen consumption of the offspring from the prenatal stress with exercise were higher compared to the offspring from the prenatal stress. Exercise before pregnancy alleviated prenatal stress-induced impairment of memory, neurogenesis, and mitochondrial function. Therefore, exercise before pregnancy may have a protective effect against prenatal stress of the offspring.
Collapse
Affiliation(s)
- Tae-Woon Kim
- Department of Human Health Care, Gyeongsang National University, Jinju,
Korea
| | - Sang-Seo Park
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul,
Korea
| | - Sang-Hoon Kim
- Department of Sport and Health Sciences, College of Art and Culture, Sangmyung University, Seoul,
Korea
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ,
USA
| | - Myung-Ki Kim
- College of Culture and Sports, Division of Global Sport Studies, Korea University, Sejong,
Korea
| | - Mal-Soon Shin
- College of Culture and Sports, Division of Global Sport Studies, Korea University, Sejong,
Korea
| | - Seong-Hyun Kim
- Department of Kinesiology, Michigan State University, East Lansing, MI,
USA
| |
Collapse
|
3
|
Liu H, Wei T, Huang Q, Liu W, Yang Y, Jin Y, Wu D, Yuan K, Zhang P. The roles, mechanism, and mobilization strategy of endogenous neural stem cells in brain injury. Front Aging Neurosci 2022; 14:924262. [PMID: 36062152 PMCID: PMC9428262 DOI: 10.3389/fnagi.2022.924262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Brain injury poses a heavy disease burden in the world, resulting in chronic deficits. Therapies for brain injuries have been focused on pharmacologic, small molecule, endocrine and cell-based therapies. Endogenous neural stem cells (eNSCs) are a group of stem cells which can be activated in vivo by damage, neurotrophic factors, physical factor stimulation, and physical exercise. The activated eNSCs can proliferate, migrate and differentiate into neuron, oligodendrocyte and astrocyte, and play an important role in brain injury repair and neural plasticity. The roles of eNSCs in the repair of brain injury include but are not limited to ameliorating cognitive function, improving learning and memory function, and promoting functional gait behaviors. The activation and mobilization of eNSCs is important to the repair of injured brain. In this review we describe the current knowledge of the common character of brain injury, the roles and mechanism of eNSCs in brain injury. And then we discuss the current mobilization strategy of eNSCs following brain injury. We hope that a comprehensive awareness of the roles and mobilization strategy of eNSCs in the repair of cerebral ischemia may help to find some new therapeutic targets and strategy for treatment of stroke.
Collapse
Affiliation(s)
- Haijing Liu
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Tao Wei
- Library, Kunming Medical University, Kunming, China
- School of Continuing Education, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Qin Huang
- Department of Teaching Affairs and Administration, Kunming Medical University, Kunming, China
| | - Wei Liu
- School of Public Health, Kunming Medical University, Kunming, China
| | - Yaopeng Yang
- Department of Pulmonary and Critical Care Medicine, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, China
| | - Yaju Jin
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Danli Wu
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Kai Yuan
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Pengyue Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
4
|
Effects of Exercise on Skeletal Muscle Pathophysiology in Huntington's Disease. J Funct Morphol Kinesiol 2022; 7:jfmk7020040. [PMID: 35645302 PMCID: PMC9149967 DOI: 10.3390/jfmk7020040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
Huntington's disease (HD) is a rare, hereditary, and progressive neurodegenerative disease, characterized by involuntary choreatic movements with cognitive and behavioral disturbances. In order to mitigate impairments in motor function, physical exercise was integrated in HD rehabilitative interventions, showing to be a powerful tool to ameliorate the quality of life of HD-affected patients. This review aims to describe the effects of physical exercise on HD-related skeletal muscle disorders in both murine and human models. We performed a literature search using PubMed, Scopus, and Web of Science databases on the role of physical activity in mouse models of HD and human patients. Fifteen publications fulfilled the criteria and were included in the review. Studies performed on mouse models showed a controversial role played by exercise, whereas in HD-affected patients, physical activity appeared to have positive effects on gait, motor function, UHDMRS scale, cognitive function, quality of life, postural stability, total body mass, fatty acid oxidative capacity, and VO2 max. Physical activity seems to be feasible, safe, and effective for HD patients. However, further studies with longer follow-up and larger cohorts of patients will be needed to draw firm conclusions on the positive effects of exercise for HD patients.
Collapse
|
5
|
Environmental stimulation in Huntington disease patients and animal models. Neurobiol Dis 2022; 171:105725. [DOI: 10.1016/j.nbd.2022.105725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 01/07/2023] Open
|
6
|
Marszalek-Grabska M, Walczak K, Gawel K, Wicha-Komsta K, Wnorowska S, Wnorowski A, Turski WA. Kynurenine emerges from the shadows – Current knowledge on its fate and function. Pharmacol Ther 2021; 225:107845. [DOI: 10.1016/j.pharmthera.2021.107845] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022]
|
7
|
Kim A, Lalonde K, Truesdell A, Gomes Welter P, Brocardo PS, Rosenstock TR, Gil-Mohapel J. New Avenues for the Treatment of Huntington's Disease. Int J Mol Sci 2021; 22:ijms22168363. [PMID: 34445070 PMCID: PMC8394361 DOI: 10.3390/ijms22168363] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disorder caused by a CAG expansion in the HD gene. The disease is characterized by neurodegeneration, particularly in the striatum and cortex. The first symptoms usually appear in mid-life and include cognitive deficits and motor disturbances that progress over time. Despite being a genetic disorder with a known cause, several mechanisms are thought to contribute to neurodegeneration in HD, and numerous pre-clinical and clinical studies have been conducted and are currently underway to test the efficacy of therapeutic approaches targeting some of these mechanisms with varying degrees of success. Although current clinical trials may lead to the identification or refinement of treatments that are likely to improve the quality of life of those living with HD, major efforts continue to be invested at the pre-clinical level, with numerous studies testing novel approaches that show promise as disease-modifying strategies. This review offers a detailed overview of the currently approved treatment options for HD and the clinical trials for this neurodegenerative disorder that are underway and concludes by discussing potential disease-modifying treatments that have shown promise in pre-clinical studies, including increasing neurotropic support, modulating autophagy, epigenetic and genetic manipulations, and the use of nanocarriers and stem cells.
Collapse
Affiliation(s)
- Amy Kim
- Island Medical Program and Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada; (A.K.); (K.L.)
| | - Kathryn Lalonde
- Island Medical Program and Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada; (A.K.); (K.L.)
| | - Aaron Truesdell
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada;
- Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Priscilla Gomes Welter
- Neuroscience Graduate Program, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (P.G.W.); (P.S.B.)
| | - Patricia S. Brocardo
- Neuroscience Graduate Program, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (P.G.W.); (P.S.B.)
| | - Tatiana R. Rosenstock
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- Department of Pharmacology, University of São Paulo, São Paulo 05508-000, Brazil
| | - Joana Gil-Mohapel
- Island Medical Program and Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada; (A.K.); (K.L.)
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada;
- Correspondence: ; Tel.: +1-250-472-4597; Fax: +1-250-472-5505
| |
Collapse
|
8
|
Koito Y, Yanishi M, Kimura Y, Tsukaguchi H, Kinoshita H, Matsuda T. Serum Brain-Derived Neurotrophic Factor and Myostatin Levels Are Associated With Skeletal Muscle Mass in Kidney Transplant Recipients. Transplant Proc 2021; 53:1939-1944. [PMID: 34253381 DOI: 10.1016/j.transproceed.2021.04.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/01/2021] [Accepted: 04/19/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Sarcopenia, or reduced muscle mass, can be an important complication in kidney transplant recipients. The skeletal muscles were recently reported to secrete various myokines, such as brain-derived neurotrophic factor (BDNF) and myostatin, to regulate their mass, function, or both. The aim of the present study was to analyze the interrelationship between myokines (BDNF and myostatin) and skeletal muscle mass in kidney transplant recipients. METHODS The study population comprised 40 patients who underwent kidney transplantation at Kansai Medical University Hospital. Twenty patients had low skeletal muscle mass index (SMI) values, as measured on dual-energy x-ray absorptiometry, and were categorized into 2 groups (low SMI and normal). RESULTS Mean serum BDNF levels were 15.7 ng/mL in the low SMI group and 17.8 ng/mL in the normal group (P = .013). Mean serum myostatin levels were 362 pg/mL in the low SMI and 267 pg/mL in the normal group (P = .024). There was a significant positive correlation among metabolic equivalents and serum BDNF levels (r = 0.817; P < .001) and a significant negative correlation among metabolic equivalents and serum myostatin levels (r = -0.541; P < .001). Receiver operating characteristic analysis showed that serum BDNF and level of area under curve was 0.712, and serum myostatin level of area under the curve was 0.690. Serum BDNF and myostatin levels showed no significant difference. CONCLUSION These results suggest that BDNF and myostatin are potential biomarkers of reduced muscle mass in kidney transplant recipients.
Collapse
Affiliation(s)
- Yuya Koito
- Department of Urology and Andrology, Kansai Medical University, Osaka, Japan
| | - Masaaki Yanishi
- Department of Urology and Andrology, Kansai Medical University, Osaka, Japan.
| | - Yutaka Kimura
- Health Science Center, Kansai Medical University, Osaka, Japan
| | - Hiroyasu Tsukaguchi
- Second Department of Internal Medicine, Division of Nephrology, Kansai Medical University, Osaka, Japan
| | - Hidefumi Kinoshita
- Department of Urology and Andrology, Kansai Medical University, Osaka, Japan
| | - Tadashi Matsuda
- Department of Urology and Andrology, Kansai Medical University, Osaka, Japan
| |
Collapse
|
9
|
Nakano I, Kinugawa S, Hori H, Fukushima A, Yokota T, Takada S, Kakutani N, Obata Y, Yamanashi K, Anzai T. Serum Brain-Derived Neurotrophic Factor Levels Are Associated with Skeletal Muscle Function but Not with Muscle Mass in Patients with Heart Failure. Int Heart J 2020; 61:96-102. [DOI: 10.1536/ihj.19-400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Ippei Nakano
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University
| | - Shintaro Kinugawa
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University
| | - Hiroaki Hori
- Department of Rehabilitation, Hokkaido University Hospital
| | - Arata Fukushima
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University
| | - Takashi Yokota
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University
| | - Shingo Takada
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University
| | - Naoya Kakutani
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University
- Research Fellow of the Japan Society for the Promotion of Science
| | - Yoshikuni Obata
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University
| | - Katsuma Yamanashi
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University
| | - Toshihisa Anzai
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University
| |
Collapse
|
10
|
Gholamnezhad Z, Boskabady MH, Jahangiri Z. Exercise and Dementia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1228:303-315. [PMID: 32342466 DOI: 10.1007/978-981-15-1792-1_20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several experimental and human studies documented the preventive and therapeutic effects of exercise on various diseases as well as the normal physiological function of different systems during aging. The findings of several basic animal studies and clinical investigations identified the advantageous effects of exercise as non-pharmaceutical intervention on dementia and Alzheimer's disease (AD). The main positive effects suggested for exercise are less cognitive and behavioral impairment or decline, development of health-associated conditions (stress, sleep), reduction of dementia risk factors including chronic non-communicable disease (diabetes, cardiovascular disease), increase in neurotrophins, enhancement of brain blood flow, angiogenesis, neurogenesis, synaptogenesis and synaptic plasticity in the brain memory-related region (e.g., hippocampus), and reduction of neuroinflammation and apoptosis. However, regarding the controversial evidence in literature, designing standard clinical and experimental studies to reveal the correlation between physical activity and dementia sign and symptom including biomarker alternation, brain supramolecular and molecular changes, and neuropsychological manifestation is necessary for preparation of effective guidelines and recommendations.
Collapse
Affiliation(s)
- Zahra Gholamnezhad
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Hossien Boskabady
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Jahangiri
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Jiao M, Chen L, He Y, Wu L, Mei H. Identification of proteins in housefly ( Musca domestica) larvae powder by LC-MS/MS and their potential medical relevance. RSC Adv 2019; 9:30545-30555. [PMID: 35530205 PMCID: PMC9072225 DOI: 10.1039/c9ra05854k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 09/03/2019] [Indexed: 01/06/2023] Open
Abstract
Housefly larvae (HL) powder was used to cure wounds centuries ago for its good nutritional and pharmacological values. At present, most of the medical studies are about the crude extracts of HL, while the specific pharmacological material basis is still unclear. We ground third-instar Musca domestica larvae into a powder, degreasing and preparing the protein extract. The protein extract was subjected to enzymatic hydrolysis, and the enzymatic hydrolysis products were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). We identified a variety of highly trusted proteins (false discovery rate is less than or equal to 1%), including catalysis-related proteins, antioxidant proteins and antimicrobial peptides, which may be closely related to the anti-tumor, anti-bacterial, anti-oxidant and other pharmacological effects of HL. We identified the amino acid sequences of these proteins, and further confirmed HL's protective effect on APP/PS1 transgenic Alzheimer's mice. The results of this work provide material basis for further medical research on HL. Housefly larvae (HL) powder was used to cure wounds centuries ago for its good nutritional and pharmacological values.![]()
Collapse
Affiliation(s)
- Mengya Jiao
- Department of Biochemistry and Molecular Biology, School of Life Science and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center Guangzhou Guangdong 510006 China
| | - Lei Chen
- Department of Dental Emergency, Stomatological Hospital of Southern Medical University, Southern Medical University Guangzhou Guangdong 510280 China
| | - Yinru He
- Department of Biochemistry and Molecular Biology, School of Life Science and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center Guangzhou Guangdong 510006 China
| | - Lirong Wu
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center 280 Wai Huan Dong Lu Guangzhou Guangdong 510006 China +86-20-39352192 +86-20-39352552
| | - Hanfang Mei
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center 280 Wai Huan Dong Lu Guangzhou Guangdong 510006 China +86-20-39352192 +86-20-39352552.,Department of Biochemistry and Molecular Biology, School of Life Science and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center Guangzhou Guangdong 510006 China
| |
Collapse
|
12
|
Aas M, Djurovic S, Ueland T, Mørch RH, Fjæra Laskemoen J, Reponen EJ, Cattaneo A, Eiel Steen N, Agartz I, Melle I, Andreassen OA. The relationship between physical activity, clinical and cognitive characteristics and BDNF mRNA levels in patients with severe mental disorders. World J Biol Psychiatry 2019; 20:567-576. [PMID: 30560709 DOI: 10.1080/15622975.2018.1557345] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Background: Here we aimed to clarify the association of physical activity with cognitive function and current mood in severe mental disorders in the most extensive sample to date. Secondly, we aimed to investigate the relationship between physical activity and BDNF mRNA levels.Methods: Three hundred and six patients with a DSM-IV schizophrenia (SZ) or bipolar disorder (BD) spectrum diagnosis were included. Clinical characteristics were assessed using the Structured Clinical Interview for DSM-IV. Depressive symptomatology was measured using the Inventory of Depressive Symptoms (IDS-C) and the Calgary Depression Scale for Schizophrenia (CDSS). All patients underwent neuropsychological assessment. Physical activity was measured as hours spent on any regular physical activity (≥ or ˂90 min) per week. BDNF mRNA was measured in plasma using standardised procedures.Results: Patients with ≥90 min of physical activity per week had fewer depressive symptoms (P ˂0.001, Cohen's d = 0.48) and performed significantly better on working memory (P ˂ 0.001, d = 0.44) and executive functioning tasks (P ˂ 0.001, d = 0.50) compared to the ˂90-min group. BDNF mRNA was positively associated with physical activity (P = 0.046) and cognitive functioning (P = 0.037).Conclusions: Our study suggests a positive association between self-reported physical activity, cognitive function, mood and BDNF mRNA levels in severe mental disorders.
Collapse
Affiliation(s)
- Monica Aas
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.,NORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Torill Ueland
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Psychology, University of Oslo, Oslo, Norway
| | - Ragni H Mørch
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Elina J Reponen
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Fatebenefratelli Brescia, Brescia, Italy.,Institute of Psychiatry, Kings College London, London, UK
| | - Nils Eiel Steen
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ingrid Agartz
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Melle
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
13
|
Jahangiri Z, Gholamnezhad Z, Hosseini M. Neuroprotective effects of exercise in rodent models of memory deficit and Alzheimer's. Metab Brain Dis 2019; 34:21-37. [PMID: 30443769 DOI: 10.1007/s11011-018-0343-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/08/2018] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) is a fastest growing neurodegenerative condition with no standard treatment. There are growing evidence about the beneficial effects of exercise in brain health promotion and slowing the cognitive decline. The aim of this study was to review the protective mechanisms of treadmill exercise in different models of rodent memory deficits. Online literature database, including PubMed-Medline, Scopus, Google scholar were searched from 2003 till 2017. Original article with English language were chosen according to following key words in the title: (exercise OR physical activity) AND (memory OR learning). Ninety studies were finally included in the qualitative synthesis. The results of these studies showed the protective effects of exercise on AD induced neurodegerative and neuroinflammatory process. Neuroperotective effects of exercise on the hippocampus seem to be increasing in immediate-early gene c-Fos expression in dentate gyrus; enhancing the Wnt3 expression and inhibiting glycogen synthase kinase-3β expression; increasing the 5-bro-mo-2'-deoxyridine-positive and doublecortin-positive cells (dentate gyrus); increasing the level of astrocytes glial fibrillary acidic protein and decrease in S100B protein, increasing in blood brain barrier integrity; prevention of oxidative stress injury, inducing morphological changes in astrocytes in the stratum radiatum of cornu ammonis 1(CA1) area; increase in cell proliferation and suppress apoptosis in dentate gyrus; increase in brain-derived neurotrophic factor and tropomyosin receptor kinase B expressions; enhancing the glycogen levels and normalizing the monocarboxylate transporter 2 expression.
Collapse
Affiliation(s)
- Zahra Jahangiri
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Gholamnezhad
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran.
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| |
Collapse
|
14
|
Leeson HC, Kasherman MA, Chan-Ling T, Lovelace MD, Brownlie JC, Toppinen KM, Gu BJ, Weible MW. P2X7 Receptors Regulate Phagocytosis and Proliferation in Adult Hippocampal and SVZ Neural Progenitor Cells: Implications for Inflammation in Neurogenesis. Stem Cells 2018; 36:1764-1777. [PMID: 30068016 PMCID: PMC6635745 DOI: 10.1002/stem.2894] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 12/26/2022]
Abstract
Identifying the signaling mechanisms that regulate adult neurogenesis is essential to understanding how the brain may respond to neuro‐inflammatory events. P2X7 receptors can regulate pro‐inflammatory responses, and in addition to their role as cation channels they can trigger cell death and mediate phagocytosis. How P2X7 receptors may regulate adult neurogenesis is currently unclear. Here, neural progenitor cells (NPCs) derived from adult murine hippocampal subgranular (SGZ) and cerebral subventricular (SVZ) zones were utilized to characterize the roles of P2X7 in adult neurogenesis, and assess the effects of high extracellular ATP, characteristic of inflammation, on NPCs. Immunocytochemistry found NPCs in vivo and in vitro expressed P2X7, and the activity of P2X7 in culture was demonstrated using calcium influx and pore formation assays. Live cell and confocal microscopy, in conjunction with flow cytometry, revealed P2X7+ NPCs were able to phagocytose fluorescent beads, and this was inhibited by ATP, indicative of P2X7 involvement. Furthermore, P2X7 receptors were activated with ATP or BzATP, and 5‐ethynyl‐2′‐deoxyuridine (EdU) used to observe a dose‐dependent decrease in NPC proliferation. A role for P2X7 in decreased NPC proliferation was confirmed using chemical inhibition and NPCs from P2X7−/− mice. Together, these data present three distinct roles for P2X7 during adult neurogenesis, depending on extracellular ATP concentrations: (a) P2X7 receptors can form transmembrane pores leading to cell death, (b) P2X7 receptors can regulate rates of proliferation, likely via calcium signaling, and (c) P2X7 can function as scavenger receptors in the absence of ATP, allowing NPCs to phagocytose apoptotic NPCs during neurogenesis. stem cells2018;36:1764–1777
Collapse
Affiliation(s)
- Hannah C Leeson
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Maria A Kasherman
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Tailoi Chan-Ling
- Discipline of Anatomy and Histology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Michael D Lovelace
- Discipline of Anatomy and Histology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent's Centre for Applied Medical Research, Sydney, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales Medicine, UNSW, Sydney, Sydney, New South Wales, Australia
| | - Jeremy C Brownlie
- School of Environment and Science, Griffith University, Brisbane, Queensland, Australia
| | - Kelly M Toppinen
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Ben J Gu
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael W Weible
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia.,Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia.,School of Environment and Science, Griffith University, Brisbane, Queensland, Australia
| |
Collapse
|
15
|
Lin R, Li L, Zhang Y, Huang S, Chen S, Shi J, Zhuo P, Jin H, Li Z, Liu W, Wang Z, Chen L, Tao J. Electroacupuncture ameliorate learning and memory by improving N-acetylaspartate and glutamate metabolism in APP/PS1 mice. Biol Res 2018; 51:21. [PMID: 29980225 PMCID: PMC6034239 DOI: 10.1186/s40659-018-0166-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 05/24/2018] [Indexed: 01/13/2023] Open
Abstract
Objective To explore the precise mechanism of electroacupuncture (EA) to delay cognitive impairment in Alzheimer disease. Methods N-Acetylaspartate (NAA), glutamate (Glu) and myoinositol (mI) metabolism were measured by magnetic resonance spectroscopy, learning and memory of APP/PS1 mouse was evaluated by the Morris water maze test and the step-down avoidance test, neuron survival number and neuronal structure in the hippocampus were observed by Nissl staining, and BDNF and phosphorylated TrkB detected by Western blot. Results EA at DU20 acupuncture significantly improve learning and memory in behavioral tests, up-regulate NAA, Glu and mI metabolism, increase the surviving neurons in hippocampus, and promote the expression of BDNF and TrkB in the APP/PS1 transgenic mice. Conclusion These findings suggested that EA is a potential therapeutic for ameliorate cognitive dysfunction, and it might be due to EA could improve NAA and Glu metabolism by upregulation of BDNF in APP/PS1 mice.
Collapse
Affiliation(s)
- Ruhui Lin
- Fujian Collaborative Innovation Center for Rehabilitation Technology, Fuzhou, 350122, People's Republic of China
| | - Long Li
- Fujian Collaborative Innovation Center for Rehabilitation Technology, Fuzhou, 350122, People's Republic of China
| | - Yingzheng Zhang
- Fujian Collaborative Innovation Center for Rehabilitation Technology, Fuzhou, 350122, People's Republic of China
| | - Sheng Huang
- TCM Rehabilitation Research Center of SATCM, Fuzhou, 350122, People's Republic of China
| | - Shangjie Chen
- Baoan People's Hospital Affiliated to Southern Medical University, Shenzhen, 518000, People's Republic of China
| | - Jiao Shi
- Baoan People's Hospital Affiliated to Southern Medical University, Shenzhen, 518000, People's Republic of China
| | - Peiyuan Zhuo
- Fujian Collaborative Innovation Center for Rehabilitation Technology, Fuzhou, 350122, People's Republic of China
| | - Hao Jin
- TCM Rehabilitation Research Center of SATCM, Fuzhou, 350122, People's Republic of China
| | - Zuanfang Li
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fuzhou, 350122, People's Republic of China
| | - Weilin Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, People's Republic of China
| | - Zhifu Wang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fuzhou, 350122, People's Republic of China
| | - Lidian Chen
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fuzhou, 350122, People's Republic of China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, People's Republic of China.
| |
Collapse
|
16
|
Paré MF, Jasmin BJ. Chronic 5-Aminoimidazole-4-Carboxamide-1-β-d-Ribofuranoside Treatment Induces Phenotypic Changes in Skeletal Muscle, but Does Not Improve Disease Outcomes in the R6/2 Mouse Model of Huntington's Disease. Front Neurol 2017; 8:516. [PMID: 29021780 PMCID: PMC5623671 DOI: 10.3389/fneur.2017.00516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/14/2017] [Indexed: 12/29/2022] Open
Abstract
Huntington’s disease (HD) is an autosomal dominant neurodegenerative genetic disorder characterized by motor, cognitive, and psychiatric symptoms. It is well established that regular physical activity supports brain health, benefiting cognitive function, mental health as well as brain structure and plasticity. Exercise mimetics (EMs) are a group of drugs and small molecules that target signaling pathways in skeletal muscle known to be activated by endurance exercise. The EM 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) has been shown to induce cognitive benefits in healthy mice. Since AICAR does not readily cross the blood–brain barrier, its beneficial effect on the brain has been ascribed to its impact on skeletal muscle. Our objective, therefore, was to examine the effect of chronic AICAR treatment on the muscular and neurological pathology in a mouse model of HD. To this end, R6/2 mice were treated with AICAR for 8 weeks and underwent regular neurobehavioral testing. Under our conditions, AICAR increased expression of PGC-1α, a powerful phenotypic modifier of muscle, and induced the expected shift toward a more oxidative muscle phenotype in R6/2 mice. However, this treatment failed to induce benefits on HD progression. Indeed, neurobehavioral deficits, striatal, and muscle mutant huntingtin aggregate density, as well as muscle atrophy were not mitigated by the chronic administration of AICAR. Although the muscle adaptations seen in HD mice following AICAR treatment may still provide therapeutically relevant benefits to patients with limited mobility, our findings indicate that under our experimental conditions, AICAR had no effect on several hallmarks of HD.
Collapse
Affiliation(s)
- Marie-France Paré
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Bernard J Jasmin
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
17
|
Treadmill Exercise Improves Memory Function Depending on Circadian Rhythm Changes in Mice. Int Neurourol J 2016; 20:S141-149. [PMID: 27915477 PMCID: PMC5169096 DOI: 10.5213/inj.1632738.369] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 10/24/2016] [Indexed: 12/22/2022] Open
Abstract
Purpose Exercise enhances memory function by increasing neurogenesis in the hippocampus, and circadian rhythms modulate synaptic plasticity in the hippocampus. The circadian rhythm-dependent effects of treadmill exercise on memory function in relation with neurogenesis were investigated using mice. Methods The step-down avoidance test was used to evaluate short-term memory, the 8-arm maze test was used to test spatial learning ability, and 5-bromo-2’-deoxyuridine immunofluorescence was used to assess neurogenesis. Western blotting was also performed to assess levels of synaptic plasticity-associated proteins, such as brain-derived neurotrophic factor, tyrosine kinase receptor B, phosphorylated cAMP response element-binding protein, early growth response protein 1, postsynaptic density protein 95, and growth-associated protein 43. The mice in the treadmill exercise at zeitgeber 1 group started exercising 1 hour after sunrise, the mice in the treadmill exercise at zeitgeber 6 group started exercising 6 hours after sunrise, and the mice in the treadmill exercise at zeitgeber 13 group started exercising 1 hour after sunset. The mice in the exercise groups were forced to run on a motorized treadmill for 30 minutes once a day for 7 weeks. Results Treadmill exercise improved short-term memory and spatial learning ability, and increased hippocampal neurogenesis and the expression of synaptic plasticity-associated proteins. These effects of treadmill exercise were stronger in mice that exercised during the day or in the evening than in mice that exercised at dawn. Conclusions Treadmill exercise improved memory function by increasing neurogenesis and the expression of synaptic plasticity-associated proteins. These results suggest that the memory-enhancing effect of treadmill exercise may depend on circadian rhythm changes.
Collapse
|
18
|
More SV, Kumar H, Cho DY, Yun YS, Choi DK. Toxin-Induced Experimental Models of Learning and Memory Impairment. Int J Mol Sci 2016; 17:E1447. [PMID: 27598124 PMCID: PMC5037726 DOI: 10.3390/ijms17091447] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 02/07/2023] Open
Abstract
Animal models for learning and memory have significantly contributed to novel strategies for drug development and hence are an imperative part in the assessment of therapeutics. Learning and memory involve different stages including acquisition, consolidation, and retrieval and each stage can be characterized using specific toxin. Recent studies have postulated the molecular basis of these processes and have also demonstrated many signaling molecules that are involved in several stages of memory. Most insights into learning and memory impairment and to develop a novel compound stems from the investigations performed in experimental models, especially those produced by neurotoxins models. Several toxins have been utilized based on their mechanism of action for learning and memory impairment such as scopolamine, streptozotocin, quinolinic acid, and domoic acid. Further, some toxins like 6-hydroxy dopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and amyloid-β are known to cause specific learning and memory impairment which imitate the disease pathology of Parkinson's disease dementia and Alzheimer's disease dementia. Apart from these toxins, several other toxins come under a miscellaneous category like an environmental pollutant, snake venoms, botulinum, and lipopolysaccharide. This review will focus on the various classes of neurotoxin models for learning and memory impairment with their specific mechanism of action that could assist the process of drug discovery and development for dementia and cognitive disorders.
Collapse
Affiliation(s)
- Sandeep Vasant More
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea.
| | - Hemant Kumar
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea.
| | - Duk-Yeon Cho
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea.
| | - Yo-Sep Yun
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea.
| | - Dong-Kug Choi
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea.
| |
Collapse
|
19
|
Postnatal Treadmill Exercise Alleviates Prenatal Stress-Induced Anxiety in Offspring Rats by Enhancing Cell Proliferation Through 5-Hydroxytryptamine 1A Receptor Activation. Int Neurourol J 2016; 20:S57-64. [PMID: 27230461 PMCID: PMC4895910 DOI: 10.5213/inj.1632600.309] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 05/12/2016] [Indexed: 01/21/2023] Open
Abstract
Purpose: Stress during pregnancy is a risk factor for the development of anxiety-related disorders in offspring later in life. The effects of treadmill exercise on anxiety-like behaviors and hippocampal cell proliferation were investigated using rats exposed to prenatal stress. Methods: Exposure of pregnant rats to a hunting dog in an enclosed room was used to induce stress. Anxiety-like behaviors of offspring were evaluated using the elevated plus maze test. Immunohistochemistry for the detection of 5-bromo-2ʹ- deoxyuridine and doublecortin (DCX) in the hippocampal dentate gyrus and 5-hydroxytryptamine 1A receptors (5-HT1A) in the dorsal raphe was conducted. Brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) levels in the hippocampus were evaluated by western blot analysis. Results: Offspring of maternal rats exposed to stress during pregnancy showed anxiety-like behaviors. Offspring also showed reduced expression of BDNF, TrkB, and DCX in the dentate gyrus, decreased cell proliferation in the hippocampus, and reduced 5-HT1A expression in the dorsal raphe. Postnatal treadmill exercise by offspring, but not maternal exercise during pregnancy, enhanced cell proliferation and expression of these proteins. Conclusions: Postnatal treadmill exercise ameliorated anxiety-like behaviors in offspring of stressed pregnant rats, and the alleviating effect of exercise on these behaviors is hypothesized to result from enhancement of cell proliferation through 5-HT1A activation in offspring rats.
Collapse
|
20
|
Petzinger GM, Holschneider DP, Fisher BE, McEwen S, Kintz N, Halliday M, Toy W, Walsh JW, Beeler J, Jakowec MW. The Effects of Exercise on Dopamine Neurotransmission in Parkinson's Disease: Targeting Neuroplasticity to Modulate Basal Ganglia Circuitry. Brain Plast 2015; 1:29-39. [PMID: 26512345 PMCID: PMC4621077 DOI: 10.3233/bpl-150021] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Animal studies have been instrumental in providing evidence for exercise-induced neuroplasticity of corticostriatal circuits that are profoundly affected in Parkinson’s disease. Exercise has been implicated in modulating dopamine and glutamate neurotransmission, altering synaptogenesis, and increasing cerebral blood flow. In addition, recent evidence supports that the type of exercise may have regional effects on brain circuitry, with skilled exercise differentially affecting frontal-striatal related circuits to a greater degree than pure aerobic exercise. Neuroplasticity in models of dopamine depletion will be reviewed with a focus on the influence of exercise on the dorsal lateral striatum and prefrontal related circuitry underlying motor and cognitive impairment in PD. Although clearly more research is needed to address major gaps in our knowledge, we hypothesize that the potential effects of exercise on inducing neuroplasticity in a circuit specific manner may occur through synergistic mechanisms that include the coupling of an increasing neuronal metabolic demand and increased blood flow. Elucidation of these mechanisms may provide important new targets for facilitating brain repair and modifying the course of disease in PD.
Collapse
Affiliation(s)
- G M Petzinger
- Department of Neurology, University of Southern California, Los Angeles, CA, 90033 ; Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, 90033
| | - D P Holschneider
- Department of Neurology, University of Southern California, Los Angeles, CA, 90033 ; Department of Psychiatry and the Behavioral Sciences, University of Southern California, Los Angeles, CA, 90033
| | - B E Fisher
- Department of Neurology, University of Southern California, Los Angeles, CA, 90033 ; Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, 90033
| | - S McEwen
- Andrus Gerontology, University of Southern California, Los Angeles, CA, 90033, and Department of Psychiatry & Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, 90095
| | - N Kintz
- Department of Neurology, University of Southern California, Los Angeles, CA, 90033
| | - M Halliday
- Department of Neurology, University of Southern California, Los Angeles, CA, 90033
| | - W Toy
- Department of Neurology, University of Southern California, Los Angeles, CA, 90033
| | - J W Walsh
- Andrus Gerontology, University of Southern California, Los Angeles, CA, 90033, and Department of Psychiatry & Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, 90095
| | - J Beeler
- Department of Psychology, CUNY, New York
| | - M W Jakowec
- Department of Neurology, University of Southern California, Los Angeles, CA, 90033 ; Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, 90033
| |
Collapse
|
21
|
Ji ES, Kim YM, Shin MS, Kim CJ, Lee KS, Kim K, Ha J, Chung YR. Treadmill exercise enhances spatial learning ability through suppressing hippocampal apoptosis in Huntington's disease rats. J Exerc Rehabil 2015; 11:133-9. [PMID: 26171378 PMCID: PMC4492422 DOI: 10.12965/jer.150212] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 06/08/2015] [Indexed: 01/16/2023] Open
Abstract
Huntington’s disease is a chronic neurodegenerative disorder inherited in an autosomal dominant fashion, and characterized as involuntary movement. Quinolinic acid has been used to produce an animal model of Huntington’s disease. In the present study, the effect of treadmill exercise on spatial-learning ability and motor coordination focusing on the apoptosis in the hippocampus was investigated using quinolinic acid-induced Huntington’s disease rats. Huntington’s disease was induced by unilateral intrastriatal injection of quinolinic acid (2 μL of 100 nmol) using stereotaxic instrument. The rats in the treadmill exercise groups were subjected to run on a treadmill for 30 min once a day during 14 days. Spatial learning ability and motor coordination were determined by radial 8-arm maze test and rota-rod test. Immunohistochemistry for caspase-3 and western blot for Bax and Bcl-2 were also conducted for the detection of apoptosis. In the present results, spatial learning ability and motor coordination were deteriorated by intrastriatal injection of quinolinic acid. In contrast, treadmill exercise exerted ameliorating effect on quinolinic acid-induced deterioration of spatial learning ability and motor coordination. Bcl-2 expression in the hippocampus was de-creased and expressions of casepase-3 and Bax in the hippocampus were increased in the quinolinic acid-induced Huntington’s disease rats. Treadmill exercise increased Bcl-2 expression and decreased expressions of casepase-3 and Bax in the Huntington’s disease rats. The present results showed that treadmill exercise might ameliorate quinolinic acid-induced loss of spatial learning ability and motor coordination by suppressing apoptosis in the hippocampus.
Collapse
Affiliation(s)
- Eun-Sang Ji
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - You-Mi Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Mal-Soon Shin
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Chang-Ju Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Kwang-Sik Lee
- Research Institute of Sports Science, National University of Incheon, Incheon, Korea
| | - Kijeong Kim
- Department of Exercise & Sport Science, College of Natural Sciences, University of Ulsan, Ulsan, Korea
| | - Jonglin Ha
- Department of Anesthesiology and Pain Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Yong-Rak Chung
- Department of Golf Mapping, College of Arts Physical Education, Joongbu University, Geumsan-gun, Chungcheongnam-do, Korea
| |
Collapse
|