1
|
Salomão R, Assis V, de Sousa Neto IV, Petriz B, Babault N, Durigan JLQ, de Cássia Marqueti R. Involvement of Matrix Metalloproteinases in COVID-19: Molecular Targets, Mechanisms, and Insights for Therapeutic Interventions. BIOLOGY 2023; 12:843. [PMID: 37372128 PMCID: PMC10295079 DOI: 10.3390/biology12060843] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
MMPs are enzymes involved in SARS-CoV-2 pathogenesis. Notably, the proteolytic activation of MMPs can occur through angiotensin II, immune cells, cytokines, and pro-oxidant agents. However, comprehensive information regarding the impact of MMPs in the different physiological systems with disease progression is not fully understood. In the current study, we review the recent biological advances in understanding the function of MMPs and examine time-course changes in MMPs during COVID-19. In addition, we explore the interplay between pre-existing comorbidities, disease severity, and MMPs. The reviewed studies showed increases in different MMP classes in the cerebrospinal fluid, lung, myocardium, peripheral blood cells, serum, and plasma in patients with COVID-19 compared to non-infected individuals. Individuals with arthritis, obesity, diabetes, hypertension, autoimmune diseases, and cancer had higher MMP levels when infected. Furthermore, this up-regulation may be associated with disease severity and the hospitalization period. Clarifying the molecular pathways and specific mechanisms that mediate MMP activity is important in developing optimized interventions to improve health and clinical outcomes during COVID-19. Furthermore, better knowledge of MMPs will likely provide possible pharmacological and non-pharmacological interventions. This relevant topic might add new concepts and implications for public health in the near future.
Collapse
Affiliation(s)
- Rebecca Salomão
- Laboratory of Molecular Analysis, Postgraduate Program in Health and Sciences and Technology, Faculty of Ceilândia, University of Brasilia, Brasilia 72220-275, DF, Brazil
| | - Victoria Assis
- Laboratory of Molecular Analysis, Postgraduate Program in Rehabilitation Sciences, Faculty of Ceilândia, University of Brasilia, Brasilia 72220-275, DF, Brazil; (V.A.); (J.L.Q.D.)
| | - Ivo Vieira de Sousa Neto
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-907, SP, Brazil;
| | - Bernardo Petriz
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasilia, Brasilia 71966-700, DF, Brazil;
- Laboratory of Exercise Molecular Physiology, University Center UDF, Brasília 71966-900, DF, Brazil
| | - Nicolas Babault
- INSERM UMR1093-CAPS, UFR des Sciences du Sport, Université de Bourgogne, F-21000 Dijon, France;
- Centre d’Expertise de la Performance, UFR des Sciences du Sport, Université de Bourgogne, F-21000 Dijon, France
| | - João Luiz Quaglioti Durigan
- Laboratory of Molecular Analysis, Postgraduate Program in Rehabilitation Sciences, Faculty of Ceilândia, University of Brasilia, Brasilia 72220-275, DF, Brazil; (V.A.); (J.L.Q.D.)
| | - Rita de Cássia Marqueti
- Laboratory of Molecular Analysis, Postgraduate Program in Health and Sciences and Technology, Faculty of Ceilândia, University of Brasilia, Brasilia 72220-275, DF, Brazil
- Laboratory of Molecular Analysis, Postgraduate Program in Rehabilitation Sciences, Faculty of Ceilândia, University of Brasilia, Brasilia 72220-275, DF, Brazil; (V.A.); (J.L.Q.D.)
| |
Collapse
|
2
|
Dhir S, Teo WP, Chamberlain SR, Tyler K, Yücel M, Segrave RA. The Effects of Combined Physical and Cognitive Training on Inhibitory Control: A Systematic Review and Meta-Analysis. Neurosci Biobehav Rev 2021; 128:735-748. [PMID: 34256070 PMCID: PMC7611490 DOI: 10.1016/j.neubiorev.2021.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/25/2021] [Accepted: 07/07/2021] [Indexed: 11/29/2022]
Abstract
While strong inhibitory control is critical for health and wellbeing, there are no broadly applicable effective behavioural interventions that enhance it. This meta-analysis examined the neurocognitive rationale for combined physical and cognitive training and synthesised the rapidly growing body of evidence examining combined paradigms to enhance inhibitory control. Across the research to date, there was a small positive effect (n studies = 16, n participants = 832) of combined training on improving inhibitory control. Sub-group analyses showed small-moderate positive effects when the physical component of the combined training was moderately intense, as opposed to low or vigorous intensities; moderate positive effects were found in older adults, as compared to adolescents and adults; and healthy individuals and those with vascular cognitive impairment, as compared to ADHD, ASD, mild cognitive impairment and cancer survivors. This is the first meta-analysis to provide evidence that combined physical, specifically when moderately intense, and cognitive training has the capacity to improve inhibitory control, particularly when delivered to healthy individuals and those experiencing age-related decline.
Collapse
Affiliation(s)
- Sakshi Dhir
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Melbourne, Victoria, Australia.
| | - Wei-Peng Teo
- Physical Education and Sports Science Academic Group, National Institute of Education, Nanyang Technological University, Singapore; Institute for Physical Activity and Nutrition, Deakin University, Melbourne, Australia
| | - Samuel R Chamberlain
- Department of Psychiatry, Faculty of Medicine, University of Southampton, UK; Southern Health NHS Foundation Trust, UK
| | - Kaelasha Tyler
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Melbourne, Victoria, Australia
| | - Murat Yücel
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Melbourne, Victoria, Australia
| | - Rebecca A Segrave
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Davis J, Mire E. Maternal obesity and developmental programming of neuropsychiatric disorders: An inflammatory hypothesis. Brain Neurosci Adv 2021; 5:23982128211003484. [PMID: 33889757 PMCID: PMC8040564 DOI: 10.1177/23982128211003484] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
Maternal obesity is associated with the development of a variety of neuropsychiatric disorders; however, the mechanisms behind this association are not fully understood. Comparison between maternal immune activation and maternal obesity reveals similarities in associated impairments and maternal cytokine profile. Here, we present a summary of recent evidence describing how inflammatory processes contribute towards the development of neuropsychiatric disorders in the offspring of obese mothers. This includes discussion on how maternal cytokine levels, fatty acids and placental inflammation may interact with foetal neurodevelopment through changes to microglial behaviour and epigenetic modification. We also propose an exosome-mediated mechanism for the disruption of brain development under maternal obesity and discuss potential intervention strategies.
Collapse
Affiliation(s)
- Jonathan Davis
- Hodge Centre for Neuropsychiatric Immunology, Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Erik Mire
- Hodge Centre for Neuropsychiatric Immunology, Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
4
|
Sousa Neto I, Fontes W, Prestes J, Marqueti R. Impact of paternal exercise on physiological systems in the offspring. Acta Physiol (Oxf) 2021; 231:e13620. [PMID: 33606364 DOI: 10.1111/apha.13620] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/04/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
A significant number of studies have demonstrated that paternal exercise modulates future generations via effects on the sperm epigenome. However, comprehensive information regarding the effects of exercise performed by the father on different tissues and their clinical relevance has not yet been explored in detail. This narrative review is focused on the effects of paternal exercise training on various physiological systems of offspring. A detailed mechanistic understanding of these effects could provide crucial clues for the exercise physiology field and aid the development of therapeutic approaches to mitigate disorders in future generations. Non-coding RNA and DNA methylation are major routes for transmitting epigenetic information from parents to offspring. Resistance and treadmill exercise are the most frequently used modalities of planned and structured exercise in controlled experiments. Paternal exercise orchestrated protective effects over changes in fetus development and placenta inflammatory status. Moreover paternal exercise promoted modifications in the ncRNA profiles, gene and protein expression in the hippocampus, left ventricle, skeletal muscle, tendon, liver and pancreas in the offspring, while the transgenerational effects are unknown. Paternal exercise demonstrates clinical benefits to the offspring and provides a warning on the harmful effects of a paternal unhealthy lifestyle. Exercise in fathers is presented as one of the most logical and cost-effective ways of restoring health in the offspring and, consequently, modifying the phenotype. It is important to consider that paternal programming might have unique significance in the developmental origins of offspring diseases.
Collapse
Affiliation(s)
- Ivo Sousa Neto
- Laboratory of Molecular Analysis Graduate Program of Sciences and Technology of Health Faculdade de Ceilândia ‐ Universidade de Brasília Brasília Distrito Federal Brazil
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry Department of Cell Biology Institute of Biology Universidade de Brasília Brasília Distrito Federal Brazil
| | - Jonato Prestes
- Graduate Program on Physical Education Universidade Católica de Brasília Brasília Distrito Federal Brazil
| | - Rita Marqueti
- Laboratory of Molecular Analysis Graduate Program of Sciences and Technology of Health Faculdade de Ceilândia ‐ Universidade de Brasília Brasília Distrito Federal Brazil
| |
Collapse
|
5
|
Yang Y, Lagisz M, Foo YZ, Noble DWA, Anwer H, Nakagawa S. Beneficial intergenerational effects of exercise on brain and cognition: a multilevel meta-analysis of mean and variance. Biol Rev Camb Philos Soc 2021; 96:1504-1527. [PMID: 33783115 DOI: 10.1111/brv.12712] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
Physical exercise not only helps to improve physical health but can also enhance brain development and cognition. Recent reports on parental (both maternal and paternal) effects raise the possibility that parental exercise may provide benefits to offspring through intergenerational inheritance. However, the general magnitude and consistency of parental exercise effects on offspring is still controversial. Additionally, empirical research has long overlooked an important aspect of exercise: its effects on variability in neurodevelopmental and cognitive traits. Here, we compiled data from 52 studies involving 4786 rodents (412 effect sizes) to quantify the intergenerational transmission of exercise effects on brain and cognition. Using a multilevel meta-analytic approach, we found that, overall, parental exercise showed a tendency for increasing their offspring's brain structure by 12.7% (albeit statistically non-significant) probably via significantly facilitating neurogenesis (16.5%). Such changes in neural anatomy go in hand with a significant 20.8% improvement in neurobehaviour (improved learning and memory, and reduced anxiety). Moreover, we found parental exercise significantly reduces inter-individual differences (i.e. reduced variance in the treatment group) in progeny's neurobehaviour by 10.2% (coefficient of variation ratio, lnCVR), suggesting the existence of an individual by intervention interaction. The positive effects of exercise are modulated by several covariates (i.e. moderators), such as the exercised parent's sex, offspring's sex, and age, mode of exercise, and exercise timing. In particular, parental forced exercise is more efficient than voluntary exercise at significantly improving offspring neurobehaviour (26.0%) and reducing its variability (14.2%). We observed larger effects when parental exercise started before pregnancy. However, exercising only during pregnancy also had positive effects. Mechanistically, exercise significantly upregulated brain-derived neurotrophic factor (BDNF) by 28.9%, vascular endothelial growth factor (VEGF) by 35.8%, and significantly decreased hippocampal DNA methylation by 3.5%, suggesting that brain growth factor cascades and epigenetic modifications can moderate the transmission of parental exercise effects. Collectively, by coupling mean with variance effects, our analyses draw a more integrated picture of the benefits that parental exercise has on offspring: not only does it improve offspring brain development and cognitive performance, but it also reduces inter-individual differences in cognition-related traits. We advocate that meta-analysis of variation together with the mean of a trait provides novel insights for old controversies as well as emerging new questions, opening up a new era for generating variance-based hypotheses.
Collapse
Affiliation(s)
- Yefeng Yang
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.,Department of Biosystems Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yong Zhi Foo
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Daniel W A Noble
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.,Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Hamza Anwer
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
6
|
Goli P, Yazdi M, Poursafa P, Kelishadi R. Intergenerational influence of paternal physical activity on the offspring's brain: A systematic review and meta-analysis. Int J Dev Neurosci 2021; 81:10-25. [PMID: 33252826 DOI: 10.1002/jdn.10081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND It is well established that parents can influence their offspring's neurodevelopment. It is shown that paternal environment and lifestyle is beneficial for the progeny's fitness and might affect their metabolic mechanisms; however, the effects of paternal exercise on brain in the offspring have not been explored in detail. OBJECTIVE This study aims to review the impact of paternal physical exercise on memory and learning, neuroplasticity, as well as DNA methylation levels in the offspring's hippocampus. STUDY DESIGN In this systematic review and meta-analysis, electronic literature search was conducted in databases including PubMed, Scopus, and Web of Science. Eligible studies were those with an experimental design, including an exercise intervention arm, with assessment of any type of memory function, learning ability, or any type of brain plasticity as the outcome measures. Standardized mean difference (SMD) and 95% confidence intervals (CI) were computed as effect size. RESULTS The systematic review revealed the important role of environmental enrichment in the behavioral development of next generation. Also, offspring of exercised fathers displayed higher levels of memory ability, and lower level of brain-derived neurotrophic factor. A significant effect of paternal exercise on the hippocampal volume was also reported in the few available studies. CONCLUSION These results suggest an intergenerational effect of paternal physical activity on cognitive benefit, which may be associated with hippocampal epigenetic programming in offspring. However, the biological mechanisms of this modulation remain to be determined.
Collapse
Affiliation(s)
- Parvin Goli
- Pediatrics Department, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Yazdi
- Pediatrics Department, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parnian Poursafa
- Cellular and Molecular Biology Department, Faculty of Science, University of Isfahan, Isfahan, Iran
| | - Roya Kelishadi
- Pediatrics Department, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Effects of Physical Exercise on Neuroplasticity and Brain Function: A Systematic Review in Human and Animal Studies. Neural Plast 2021; 2020:8856621. [PMID: 33414823 PMCID: PMC7752270 DOI: 10.1155/2020/8856621] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/02/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022] Open
Abstract
Background Physical exercise (PE) has been associated with increase neuroplasticity, neurotrophic factors, and improvements in brain function. Objective To evaluate the effects of different PE protocols on neuroplasticity components and brain function in a human and animal model. Methods We conducted a systematic review process from November 2019 to January 2020 of the following databases: PubMed, ScienceDirect, SciELO, LILACS, and Scopus. A keyword combination referring to PE and neuroplasticity was included as part of a more thorough search process. From an initial number of 20,782 original articles, after reading the titles and abstracts, twenty-one original articles were included. Two investigators evaluated the abstract, the data of the study, the design, the sample size, the participant characteristics, and the PE protocol. Results PE increases neuroplasticity via neurotrophic factors (BDNF, GDNF, and NGF) and receptor (TrkB and P75NTR) production providing improvements in neuroplasticity, and cognitive function (learning and memory) in human and animal models. Conclusion PE was effective for increasing the production of neurotrophic factors, cell growth, and proliferation, as well as for improving brain functionality.
Collapse
|
8
|
Rutkowska J, Lagisz M, Bonduriansky R, Nakagawa S. Mapping the past, present and future research landscape of paternal effects. BMC Biol 2020; 18:183. [PMID: 33246472 PMCID: PMC7694421 DOI: 10.1186/s12915-020-00892-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Although in all sexually reproducing organisms an individual has a mother and a father, non-genetic inheritance has been predominantly studied in mothers. Paternal effects have been far less frequently studied, until recently. In the last 5 years, research on environmentally induced paternal effects has grown rapidly in the number of publications and diversity of topics. Here, we provide an overview of this field using synthesis of evidence (systematic map) and influence (bibliometric analyses). RESULTS We find that motivations for studies into paternal effects are diverse. For example, from the ecological and evolutionary perspective, paternal effects are of interest as facilitators of response to environmental change and mediators of extended heredity. Medical researchers track how paternal pre-fertilization exposures to factors, such as diet or trauma, influence offspring health. Toxicologists look at the effects of toxins. We compare how these three research guilds design experiments in relation to objects of their studies: fathers, mothers and offspring. We highlight examples of research gaps, which, in turn, lead to future avenues of research. CONCLUSIONS The literature on paternal effects is large and disparate. Our study helps in fostering connections between areas of knowledge that develop in parallel, but which could benefit from the lateral transfer of concepts and methods.
Collapse
Affiliation(s)
- Joanna Rutkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Russell Bonduriansky
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| |
Collapse
|
9
|
Abstract
Exercise is a well-known non-pharmacologic agent used to prevent and treat a wide range of pathologic conditions such as metabolic and cardiovascular disease. In this sense, the classic field of exercise physiology has determined the main theoretical and practical bases of physiologic adaptations in response to exercise. However, the last decades were marked by significant advances in analytical laboratory techniques, where the field of biochemistry, genetics and molecular biology promoted exercise science to enter a new era. Regardless of its application, whether in the field of disease prevention or performance, the association of molecular biology with exercise physiology has been fundamental for unveiling knowledge of the molecular mechanisms related to the adaptation to exercise. This chapter will address the natural evolution of exercise physiology toward genetics and molecular biology, emphasizing the collection of integrated analytical approaches that composes the OMICS and their contribution to the field of molecular exercise physiology.
Collapse
|
10
|
Abstract
In recent decades, human sociocultural changes have increased the numbers of fathers that are involved in direct caregiving in Western societies. This trend has led to a resurgence of interest in understanding the mechanisms and effects of paternal care. Across the animal kingdom, paternal caregiving has been found to be a highly malleable phenomenon, presenting with great variability among and within species. The emergence of paternal behaviour in a male animal has been shown to be accompanied by substantial neural plasticity and to be shaped by previous and current caregiving experiences, maternal and infant stimuli and ecological conditions. Recent research has allowed us to gain a better understanding of the neural basis of mammalian paternal care, the genomic and circuit-level mechanisms underlying paternal behaviour and the ways in which the subcortical structures that support maternal caregiving have evolved into a global network of parental care. In addition, the behavioural, neural and molecular consequences of paternal caregiving for offspring are becoming increasingly apparent. Future cross-species research on the effects of absence of the father and the transmission of paternal influences across generations may allow research on the neuroscience of fatherhood to impact society at large in a number of important ways.
Collapse
|
11
|
Berberine Ameliorates Brain Inflammation in Poloxamer 407-Induced Hyperlipidemic Rats. Int Neurourol J 2019; 23:S102-110. [PMID: 31795609 PMCID: PMC6905211 DOI: 10.5213/inj.1938216.108] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 11/07/2019] [Indexed: 12/16/2022] Open
Abstract
Purpose Hyperlipidemia, which promotes the development of atherosclerosis, ischemic stroke, and other forms of brain injury, can be induced by poloxamer-407. Berberine is a primary pharmacological active component of Coptidis Rhizoma that has a number of therapeutic activities. This study investigated the effects of berberine on poloxamer-407-induced brain inflammation by evaluating its effects on short-term memory, cell proliferation, inflammation, and apoptosis in the hippocampus. Methods To induce hyperlipidemia in a rat model, 500 mg/kg of poloxamer-407 was injected intraperitoneally. Berberine was orally administered to the rats in the berberine-treated groups once a day for 4 weeks. The step-down task avoidance task was performed to measure short-term memory. An analysis of serum lipids, immunohistochemistry for 5-bromo-2′-deoxyuridine, glial fibrillary acidic protein (GFAP), and ionized calcium-binding adapter molecule 1 (Iba1) in the dentate gyrus, and western blot analysis for Bax, Bcl-2, and cytochrome c in the hippocampus were performed. Results In hyperlipidemic rats, berberine reduced the levels of triglycerides, total cholesterol, and low-density lipoprotein cholesterol and increased the level of high-density lipoprotein cholesterol in hyperlipidemic rats. Berberine also increased cell proliferation and short-term memory, as well as decreasing the expression of GFAP, Iba1, Bax, and cytochrome c and increasing Bcl-2 expression. Conclusions Berberine treatment improved short-term memory in hyperlipidemia by increasing neuronal proliferation and inhibiting neuronal apoptosis. Berberine treatment also improved lipid metabolism.
Collapse
|
12
|
Park SS, Shin MS, Park HS, Kim TW, Kim CJ, Lim BV. Treadmill exercise ameliorates nicotine withdrawal-induced symptoms. J Exerc Rehabil 2019; 15:383-391. [PMID: 31316930 PMCID: PMC6614762 DOI: 10.12965/jer.1938228.114] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/27/2019] [Indexed: 12/03/2022] Open
Abstract
Nicotine withdrawal symptoms comprise insomnia, depression, anxiety, attention disorders, and increased craving. We evaluated the ameliorating effect of treadmill exercise on nicotine withdrawal symptoms. The rats in the nicotine withdrawal groups received subcutaneous injection with 6-mg/kg nicotine hydrogen tartrate salt for 17 days. And then, the injection of nicotine hydrogen tartrate salt was stopped next for 2 weeks. The rats in the exercise groups performed treadmill running once a day, 5 days per week, for 31 days. In the present results, activity was decreased and anxiety-like behavior was observed in the nicotine withdrawal rats. Treadmill running increased activity and ameliorated anxiety-like behavior in the nicotine-withdrawal rats. Expressions of tryptophan hydroxylase (TPH) and 5-hydroxytryptamine (5-HT) in the dorsal raphe were decreased in the nicotine withdrawal rats, in contrast, treadmill running increased TPH and 5-HT expressions. Impaired short-term memory and deteriorated spatial learning ability were observed in the nicotine withdrawal rats, in contrast, treadmill running ameliorated impairment of short-term memory and spatial learning ability. Expressions of brain-derived neurotrophic factor and tyrosine kinase B (TrkB) were decreased in the nicotine withdrawal rats, in contrast, treadmill running increased brain-derived neurotrophic factor and TrkB expressions. The numbers of the doublecortin (DCX)-positive cells and 5-bromo-2′-deoxyuridine (BrdU)-positive cells in the dentate gyrus were suppressed in the nicotine withdrawal rats, in contrast, treadmill running enhanced the numbers of DCX-positive cells and BrdU-positive cells. The present study demonstrate that treadmill exercise ameliorated nicotine withdrawal-induced anxiety, depression, and memory impairment.
Collapse
Affiliation(s)
- Sang-Seo Park
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Mal-Soon Shin
- School of Global Sport Studies, Korea University, Sejong, Korea
| | - Hye-Sang Park
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Tae-Woon Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea.,Exercise Rehabilitation Research Institute, Department of Sport & Health Science, Sangmyung University, Seoul, Korea
| | - Chang-Ju Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Baek-Vin Lim
- Division of Leisure & Sports Science, Department of Exercise Prescription, Dongseo University, Busan, Korea
| |
Collapse
|
13
|
Spindler C, Segabinazi E, de Meireles ALF, Piazza FV, Mega F, dos Santos Salvalaggio G, Achaval M, Elsner VR, Marcuzzo S. Paternal physical exercise modulates global DNA methylation status in the hippocampus of male rat offspring. Neural Regen Res 2019; 14:491-500. [PMID: 30539818 PMCID: PMC6334599 DOI: 10.4103/1673-5374.245473] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 09/29/2018] [Indexed: 12/13/2022] Open
Abstract
It is widely known that maternal physical exercise is able to induce beneficial improvements in offspring cognition; however, the effects of paternal exercise have not been explored in detail. The present study was designed to evaluate the impact of paternal physical exercise on memory and learning, neuroplasticity and DNA methylation levels in the hippocampus of male offspring. Adult male Wistar rats were divided into two groups: sedentary or exercised fathers. The paternal preconception exercise protocol consisted of treadmill running, 20 minutes daily, 5 consecutive days per week for 22 days, while the mothers were not trained. After mating, paternal sperm was collected for global DNA methylation analysis. At postnatal day 53, the offspring were euthanized, and the hippocampus was dissected to measure cell survival by 5-bromo-2'-deoxiuridine and to determine the expression of synaptophysin, reelin, brain-derived neurotrophic factor and global DNA methylation levels. To measure spatial memory and learning changes in offspring, the Morris water maze paradigm was used. There was an improvement in spatial learning, as well as a significant decrease in hippocampal global DNA methylation levels in the offspring from exercised fathers compared with those from sedentary ones; however, no changes were observed in neuroplasticity biomarkers brain-derived neurotrophic factor, reelin and 5-bromo-2'-deoxiuridine. Finally, the global DNA methylation of paternal sperm was not significantly changed by physical exercise. These results suggest a link between paternal preconception physical activity and cognitive benefit, which may be associated with hippocampal epigenetic programming in male offspring. However, the biological mechanisms of this modulation remain unclear.
Collapse
Affiliation(s)
- Christiano Spindler
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ethiane Segabinazi
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Luís Ferreira de Meireles
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Francele Valente Piazza
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Filipe Mega
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriela dos Santos Salvalaggio
- Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Matilde Achaval
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Viviane Rostirola Elsner
- Programa de Pós-Graduação em Biociências e Reabilitação, Centro Universitário Metodista-IPA, Porto Alegre, RS, Brazil
| | - Simone Marcuzzo
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
14
|
Treadmill Exercise Alleviates Circadian Rhythm Disruption-Induced Memory Deficits by Activation of Glucocorticoid Receptor and Brain-Derived Neurotrophic Factor-Dependent Pathway. Int Neurourol J 2019; 23:S40-49. [PMID: 30832466 PMCID: PMC6433206 DOI: 10.5213/inj.1938048.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 02/12/2019] [Indexed: 12/22/2022] Open
Abstract
Purpose Circadian rhythm affects learning process, memory consolidation, and long-term memory. In this study, the alleviating effect of exercise on circadian rhythm disruption-induced memory deficits was investigated. Methods BMAL1 knockdown transgenic mice (BMAL1 TG) were used as the BMAL1-TG group and the BMAL1-TG with treadmill exercise group. Female C57BL/6J mice of the same age were used as the wildtype group and the wildtype with treadmill exercise group. The mice in the treadmill exercise groups performed running on a motorized treadmill under the dark-dark conditions for 8 weeks. Short-term memory, nonspatial object memory, and spatial learning memory were determined using stepdown avoidance test, novel object-recognition test, and radial 8-arm maze test. Immunohistochemistry for doublecortin and 5-bromo-2’-deoxyuridine was conducted for the determination of hippocampal neurogenesis. Using the western blot analysis, we determined the expressions of glucocorticoid receptor (GR) and factors related to the neurogenesis and memory consolidation, such as brain-derived neurotrophic factor, tyrosine kinase B, p44/42 mitogen-activated protein kinase, cyclic AMP-responsive element binding protein, phosphatidylinositol 3-kinase, protein kinas B, protein kinase C alpha, early-growth-response gene 1. Results Circadian rhythm disruption impaired memory function through inhibiting the expressions of GR and the factors related to neurogenesis and memory consolidation. Treadmill exercise improved memory function via enhancing the expressions of GR and above-mentioned factors. Conclusions Treadmill exercise acts as the zeitgeber that improves memory function under the circadian rhythm disrupted conditions.
Collapse
|
15
|
Paternal physical exercise demethylates the hippocampal DNA of male pups without modifying the cognitive and physical development. Behav Brain Res 2018; 348:1-8. [DOI: 10.1016/j.bbr.2018.03.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/09/2018] [Accepted: 03/26/2018] [Indexed: 01/10/2023]
|