1
|
Zhang L, Yamada S, Nagoshi N, Shinozaki M, Tsuji T, Nakamura M, Okano H, Tashiro S. Combining therapeutic strategies with rehabilitation improves motor recovery in animal models of spinal cord injury: A systematic review and meta-analysis. Ann Phys Rehabil Med 2025; 68:101911. [PMID: 39798215 DOI: 10.1016/j.rehab.2024.101911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/25/2024] [Accepted: 08/18/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND Despite the lack of clinically validated strategies for treating spinal cord injury (SCI), combining therapeutic strategies with rehabilitation is believed to promote recovery of motor function; however, current research findings are inconsistent. OBJECTIVES To explore whether combination therapy involving therapy and rehabilitative training (CIRT) has a synergistic effect on motor function recovery in animal models of SCI. METHODS We conducted a systematic review and meta-analysis of studies identified in a keyword search of 6 databases and extracted open-field motor scores from the Basso Mouse Scale (BMS) and the Basso, Beattie, and Bresnahan Locomotor Rating Scale (BBB) for meta-analysis using a weighted mean difference (WMD) and 95 % CI. We also performed qualitative synthesis and analysis of secondary outcome measures related to histological improvements and adverse effects. RESULTS Eighty-seven preclinical studies were included. Combination treatment with treadmill training resulted in a significant improvement in motor function (1.40, 95 % CI 0.82 to 1.98, P < 0.01, I2 = 49 %), especially when initiated 1-2 weeks post-injury (1.77, 95 % CI 1.10 to 2.45, P < 0.01, I2 = 33 %) in rats. In mice, CIRT lasting <6 weeks may enhance recovery (0.95, 95 % CI 0.49 to 1.40, P < 0.01, I2 = 33 %). Although there is a trend toward better outcomes in the chronic phase, insufficient sample sizes prevent definitive conclusions from being drawn. Combined therapy also enhances the reorganization of inhibitory synaptic structures and functions, without aggravating allodynia or spasticity. CONCLUSIONS This systematic review and meta-analysis suggest that CIRT can lead to superior motor function recovery compared to single-modality therapy (SMT) in animal models of SCI, with no significant adverse effects on allodynia or spasticity. However, the efficacy of CIRT depends on various factors, and further research is needed to establish optimal treatment strategies and understand the underlying mechanisms of recovery.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Rehabilitation Medicine, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611, Japan
| | - Shin Yamada
- Department of Rehabilitation Medicine, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611, Japan
| | - Narihito Nagoshi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Munehisa Shinozaki
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582
| | - Tetsuya Tsuji
- Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582
| | - Syoichi Tashiro
- Department of Rehabilitation Medicine, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611, Japan; Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
2
|
Treadmill training based on the overload principle promotes locomotor recovery in a mouse model of chronic spinal cord injury. Exp Neurol 2021; 345:113834. [PMID: 34370998 DOI: 10.1016/j.expneurol.2021.113834] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/16/2021] [Accepted: 08/02/2021] [Indexed: 11/21/2022]
Abstract
Rehabilitative treatment, including treadmill training, is considered an important strategy for restoring motor function after spinal cord injury (SCI). However, many unexplained problems persist regarding the appropriate rehabilitative method and the mechanism underlying the beneficial effects of rehabilitation. Moreover, only a few preclinical studies have been performed on rehabilitative interventions for chronic SCI, although most patients have chronic injuries. In fact, several preclinical studies reported that rehabilitative training was less effective when applied during the chronic phase than when applied sooner. While numerous studies have examined the effects of treadmill training during the subacute phase, the training conditions vary considerably among preclinical reports. Therefore, establishing a standard training protocol is essential for achieving beneficial rehabilitation effects at the chronic stage. Since the difficulty of applying an appropriate training load hinders training at constant speeds, it is important to adjust the training intensity in accordance with the exercise tolerance of an individual animal to provide further functional recovery benefits. Here, we created a novel quadrupedal treadmill training protocol based on the overload principle for mice with incomplete thoracic SCI. We subjected SCI model mice to rehabilitative training according to the protocol for two consecutive weeks starting at 42 days after injury. We examined the treadmill speeds at which the mice were able to run based on the severity of paresis and investigated the impact of the protocol on functional recovery. Assessment of running speed changes during the treadmill training period revealed faster treadmill speeds for mice with mild paresis than for those with severe paresis. The training parameters, including the speed and distance traveled, were positively correlated with the changes in motor function. These results suggest that the most suitable running speed during treadmill training differs according to the level of motor dysfunction and that running longer distances has a positive impact on motor functional recovery. Based on this established protocol, we compared functional and histological results between the chronic SCI groups with and without rehabilitation. The gait analyses showed significantly better functional improvement in the rehabilitation group than in the nonrehabilitation group. Histological analyses revealed that the BDNF- and VGLUT1-positive areas of lumbar enlargement were significantly increased in the rehabilitation group. These findings implied that rehabilitation promoted not only motor performance but also motor control, including forelimb-hindlimb coordination, even in chronic SCI, resulting in functional improvement by treadmill training alone. Therefore, rehabilitative training based on the overload principle appears to be one of the appropriate treatment options for incomplete thoracic SCI, and evidence of its efficacy exists in actual clinical settings.
Collapse
|
3
|
Wang M, Jia L, Wu X, Sun Z, Xu Z, Kong C, Ma L, Zhao R, Lu S. Deep Brain Stimulation Improves Motor Function in Rats with Spinal Cord Injury by Increasing Synaptic Plasticity. World Neurosurg 2020; 140:e294-e303. [PMID: 32407911 DOI: 10.1016/j.wneu.2020.05.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To investigate the effect of deep brain stimulation (DBS) on rats with spinal cord injury (SCI) and its possible molecular mechanism. METHODS A rat SCI model was prepared using a modified Allen method. The animals were randomly divided into 3 groups (n = 12 per group): the sham group, the SCI group, and the SCI + DBS group. Then, DBS was applied to the rats in the SCI + DBS group for half an hour per day for 4 weeks. Basso, Beattie, and Bresnahan scores were used to assess spinal function. RESULTS DBS significantly improved hindlimb motor function in SCI rats, and the protein expression levels of brain-derived neurotrophic factor, the mammalian target of rapamycin, tropomyosin-related kinase B, protein kinase B, p70 ribosomal S6 protein kinase, postsynaptic density protein 95, and synaptophysin increased correspondingly. CONCLUSIONS DBS improves motor function in rats with SCI by increasing synaptic plasticity via tropomyosin-related kinase B-protein kinase B-mammalian target of rapamycin pathway.
Collapse
Affiliation(s)
- Min Wang
- Department of Orthopedics, Xuanwu Hospital Capital Medical University, Beijing, China; The fourth Department of Orthopedics, Jincheng General Hospital, Jincheng, Shanxi Province, China
| | - Lina Jia
- Beijing Key Laboratory of Mental Disorders & The National Clinical Research Center for Mental Disorder, Beijing Anding Hospital, Capital Medical University, Beijing, China; Department of Neurology, Jincheng General Hospital, Jincheng, Shanxi Province, China
| | - Xiaobo Wu
- The fourth Department of Orthopedics, Jincheng General Hospital, Jincheng, Shanxi Province, China
| | - Zuoli Sun
- Beijing Key Laboratory of Mental Disorders & The National Clinical Research Center for Mental Disorder, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Zheng Xu
- The fourth Department of Orthopedics, Jincheng General Hospital, Jincheng, Shanxi Province, China
| | - Chao Kong
- Department of Orthopedics, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Lin Ma
- The fourth Department of Orthopedics, Jincheng General Hospital, Jincheng, Shanxi Province, China
| | - Ruifeng Zhao
- The fourth Department of Orthopedics, Jincheng General Hospital, Jincheng, Shanxi Province, China
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Kim YM, Ji ES, Ko IG, Jin JJ, Cho YH, Seo TB. Combination of treadmill exercise with bone marrow stromal cells transplantation activates protein synthesis-related molecules in soleus muscle of the spinal cord injured rats. J Exerc Rehabil 2019; 15:377-382. [PMID: 31316929 PMCID: PMC6614772 DOI: 10.12965/jer.1938284.142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022] Open
Abstract
The present study investigated whether treadmill exercise with bone marrow stromal cells (BMSCs) transplantation increase expression level of protein synthesis-related molecules in the soleus muscle after spinal cord injury (SCI). The spinal cord contusion injury was performed at the T9-10 level using the impactor (10 g×25 mm). BMSCs were cultured from femur and tibia of 4-week-old rats and then transplanted directly into the lesion 1-week post injury. The rats in exercise group were walking on treadmill device for 6 days per a week during 6 weeks. Prepared soleus muscles were used for examining mechanisms of protein synthesis after SCI. Myostatin induction level was increased by SCI, but BMSCs engrafting after SCI decreased compared to SCI group. Combination of treadmill exercise with BMSCs showed more potent decrement on myostatin expression. Protein kinase B (Akt) and mammalian target of rapamycin (mTOR) levels were significantly increased in SCI and BMSCs transplantation group compared to SCI group. Combination of treadmill exercise with BMSCs further facilitated expression levels of Akt and mTOR. Insulin-like growth factor-I (IGF-I) and phosphorylated cyclic adenosine monophosphate response element-binding protein (p-CREB) induction levels were more increased in SCI and BMSC transplantation group compared to SCI group. Combination of treadmill exercise with BMSCs further increased expression levels of IGF-I and p-CREB, although statistical significance was not appeared. Combining treadmill exercise with BMSCs transplantation might accelerate protein synthesis and hypertrophy in the soleus muscle after SCI through activation of IGF-I/mTOR signaling pathway.
Collapse
Affiliation(s)
- You-Mi Kim
- Sports Science Research Institution, Korea National Sport University, Seoul, Korea
| | - Eun-Sang Ji
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Il-Gyu Ko
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Jun-Jang Jin
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Yeong-Hyun Cho
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju, Korea
| | - Tae-Beom Seo
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju, Korea
| |
Collapse
|
5
|
Shin KM, Ko IG, Kim SE, Jin JJ, Hwang L, Kim SH, Seo JH, Kim BK, Na YG. Low-frequency electroacupncture improves locomotor function after sciatic crushed nerve injury in rats. J Exerc Rehabil 2019; 14:927-933. [PMID: 30656150 PMCID: PMC6323326 DOI: 10.12965/jer.1836594.297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/26/2018] [Indexed: 11/22/2022] Open
Abstract
Sciatic crushed nerve injury (SCI) causes pain-related gait and swelling in the affected limb. Electroacupuncture (EA) is a modified acupuncture technique, and analgesic effect of EA on different types of pain has been documented. Scientific functional index (SFI) is a mathematical formula to represent parameters of normal and experimental footprints. We investigated the effect of low-frequency EA on functional recovery following SCI in rats. For this study, immunohistochemistry for c-Fos in the ventral lateral periaqueductal gray (vlPAG) and paraventricular nucleus (PVN) and western blot for neurofilament (NF) and brain-derived neurotrophic factor (BDNF) in the sciatic nerve were conducted. To induce crush injury on the sciatic nerve, sciatic nerve was crushed for 30 sec using a surgical clip. The rats in the acupuncture groups received acupuncture bilaterally at respective site, once a day for 14 days. The rats in the EA group received 100-Hz electrical stimulation for 10 min once a day during 14 days. SCI decreased SFI value, in contrast, EA increased SFI value. c-Fos expression in the vlPAG and PVN was increased following SCI, in contrast, EA suppressed c-Fos expression. NF expression in the sciatic nerve was decreased by SCI, in contrast, EA increased NF expression. BDNF expression in the sciatic nerve was increased by SCI, in contrast, EA suppressed BDNF expression. In the present study, EA showed effectiveness on functional recovery from SCI.
Collapse
Affiliation(s)
- Key-Moon Shin
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Il-Gyu Ko
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Sung-Eun Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Jun-Jang Jin
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Lakkyong Hwang
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Sang-Hoon Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea.,Department of Sport & Health Science, College of Natural Science, Sangmyung University, Seoul, Korea
| | - Jin-Hee Seo
- Department of Adaptive Physical Education, Baekseok University, Cheonan, Korea
| | - Bo-Kyun Kim
- Department of Emergency Technology, College of Health Science, Gachon University, Incheon, Korea
| | - Yong Gil Na
- Department of Urology, Chungnam National University Hospital, Chungnam National University College of Medicine, Daejeon, Korea
| |
Collapse
|
6
|
Scolopendra subspinipes mutilans Extract Suppresses Inflammatory and Neuropathic Pain In Vitro and In Vivo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:5057372. [PMID: 30647762 PMCID: PMC6311788 DOI: 10.1155/2018/5057372] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 11/16/2018] [Accepted: 11/29/2018] [Indexed: 12/30/2022]
Abstract
Background Sciatic nerve injury develops from a variety of pathological causes, including traumatic injury and neuroinflammatory disorders, which are accompanied by pathological changes that have a critical impact on neuropathic pain and locomotor activity. Extracts of Scolopendra subspinipes mutilans (SSM) are used in traditional medicine for the treatment of a wide range of neuropathic diseases, including lower back pain, peripheral neuropathy, and sciatic nerve injury. Although SSM shows anti-inflammatory, antibacterial, and anticonvulsant activities, its diverse mechanisms of action remain unclear. Thus, the present study examined the effects of SSM in vitro and in vivo. Methods To estimate the anti-inflammatory effects of SSM, inflammatory conditions were induced using lipopolysaccharide (LPS) in RAW 264.7 cells, and inflammatory-related factors were evaluated by enzyme-linked immunosorbent assay (ELISA) and western blotting analyses. Sciatic nerve crush injury (SNCI) was induced in rats using a surgical clip instrument. The effects of SSM in the SNCI model were evaluated in behavioral tests by calculating the sciatic functional index (SFI) and measuring thermal hyperalgesia sensitivity and by monitoring inflammatory factors expression in western blotting analyses. Results We observed the anti-inflammatory effects of SSM treatment both in vitro and in vivo. The PGE2 and NO production were suppressed by SSM. Protein analyses indicated that expression of NF-κB and degradation of IκBα were suppressed by SSM treatment. In addition, the levels of iNOS, TNF-α, IL-6, and COX-2 expression were reduced by SSM treatment in RAW 264.7 cells and in the SNCI-induced animals. In behavioral studies, SSM treatment enhanced the SFI and improved the thermal sensitivity test results. Conclusions Our results suggest that SSM suppresses the production of inflammatory factors via the NF-κB pathway and accelerates the morphological and functional recovery of the peripheral nervous system. Hence, SSM may be a useful therapeutic candidate for treatment of neuropathic pain diseases.
Collapse
|
7
|
Stem Cell Transplantation and Physical Exercise in Parkinson's Disease, a Literature Review of Human and Animal Studies. Stem Cell Rev Rep 2018; 14:166-176. [PMID: 29270820 DOI: 10.1007/s12015-017-9798-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The absence of effective and satisfactory treatments that contribute to repairing the dopaminergic damage caused by Parkinson's Disease (PD) and the limited recovery capacity of the nervous system are troubling issues and the focus of many research and clinical domains. Recent advances in the treatment of PD through stem cell (SC) therapy have recognized their promising restorative and neuroprotective effects that are implicated in the potentiation of endogenous mechanisms of repair and contribute to functional locomotor improvement. Physical exercise (PE) has been considered an adjuvant intervention that by itself induces beneficial effects in patients and animal models with Parkinsonism. In this sense, the combination of both therapies could provide synergic or superior effects for motor recovery, in contrast with their individual use. This review aims to provide an update on recent progress and the potential effectiveness of SC transplantation and PE for the treatment of locomotor deficits in PD. It has reviewed the neuropathological pathways involved in the classical motor symptoms of this condition and the mechanisms of action described in experimental studies that are associated with locomotor enhancement through exercise, cellular transplantation, and their union in some neurodegenerative conditions.
Collapse
|
8
|
Kim YM, Jin JJ, Lee SJ, Seo TB, Ji ES. Treadmill exercise with bone marrow stromal cells transplantation facilitates neuroprotective effect through BDNF-ERK1/2 pathway in spinal cord injury rats. J Exerc Rehabil 2018; 14:335-340. [PMID: 30018915 PMCID: PMC6028222 DOI: 10.12965/jer.1836264.132] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/17/2018] [Indexed: 11/22/2022] Open
Abstract
Transplantation of bone marrow stromal cells (BMSCs) has been known as one of the effective therapeutic methods for functional recovery of spinal cord injury (SCI). Treadmill exercise also facilitates the functional recovery of SCI. Previously, we reported that combination of BMSCs transplantation with treadmill exercise potentiated the locomotor function in SCI rats. In the present study, we investigated whether recovery effect of BMSCs transplantation or treadmill exercise appears through the brain-derived neurotrophic factor (BDNF)-extracellular signal–regulated kinases 1/2 (ERK1/2) pathway. The spinal cord contusion injury was performed at the T9–T10 level using the impactor. Cultured BMSCs were transplanted directly into the lesion 1 week after SCI. Treadmill exercise was performed 6 days per a week for 6 weeks. Western blot for Bax, Bcl-2, BDNF, tyrosine kinase B (TrkB), and phosphorylated ERK1/2 (p-ERK1/2), phosphorylated JNK was performed. In the present results, combination of BMSCs transplantation with tread-mill exercise potently decreased Bax expression, potently increased Bcl-2 expression, and potently enhanced BDNF and TrkB expressions in the injured spinal cord. Combination of BMSCs transplantation with treadmill exercise further facilitated p-ERK1/2 and p-c-Jun expression levels. The present findings demonstrated the synergistic effect of treadmill exercise on neuroregenerative effect of BMSCs transplantation appeared through the activation of BDNF-ERK1/2 pathway in SCI.
Collapse
Affiliation(s)
- You-Mi Kim
- Sports Science Research Institution, Korea National Sport University, Seoul, Korea
| | - Jun-Jang Jin
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Sam-Jun Lee
- Department of Physical Education, College of Health, Welfare, and Education, Tong Myong University, Busan, Korea
| | - Tae-Beom Seo
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju, Korea
| | - Eun-Sang Ji
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
9
|
Motaghinejad O, Motaghinejad M, Motevalian M, Rahimi-Sharbaf F, Beiranvand T. The effect of maternal forced exercise on offspring pain perception, motor activity and anxiety disorder: the role of 5-HT2 and D2 receptors and CREB gene expression. J Exerc Rehabil 2017; 13:514-525. [PMID: 29114525 PMCID: PMC5667597 DOI: 10.12965/jer.1734992.496] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 09/13/2017] [Indexed: 12/16/2022] Open
Abstract
The effect of maternal forced exercise on central disorders in offsprings has been shown but the mechanism is still unclear. In this study, the role of 5-HT2 and D2 receptors in neuroprotective effects of maternal forced exercise on offspring neurodevelopment and neurobehavioral symptoms is evaluated. Sixty pregnant rats were trained by forced exercise and some behavioral and molecular aspects in their offspring were evaluated in presence of 5-HT2 and D2 receptors agonists and antagonists. The results showed that maternal forced exercise causes increase of pain tolerability and increase latency of pain perception in offspring in hot plate test, writhing test and tail flick test. Also maternal forced exercise causes decrease of depression and anxiety like behavior in offsprings. On the other hand, treatment of mothers by forced exercise in combination with 5-HT2 and D2 receptor antagonists inhibited the protective effects of forced exercise and cause disturbance in pain perception and tolerability and increase depression and anxiety in offsprings. Also expression of cyclic AMP response element binding protein (CREB) was changed in all experimental groups. In conclusion, our data suggested that maternal forced exercise causes neurobehavioral protective effect on offsprings and this effect might probably be mediated by 5-HT2 and D2 receptors and activation of CREB gene expression.
Collapse
Affiliation(s)
- Ozra Motaghinejad
- Razi Drug Research Center and Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Motaghinejad
- Razi Drug Research Center and Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Manijeh Motevalian
- Razi Drug Research Center and Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Tabassom Beiranvand
- Razi Drug Research Center and Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|