1
|
Mendoza A, Karch J. Keeping the beat against time: Mitochondrial fitness in the aging heart. FRONTIERS IN AGING 2022; 3:951417. [PMID: 35958271 PMCID: PMC9360554 DOI: 10.3389/fragi.2022.951417] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022]
Abstract
The process of aging strongly correlates with maladaptive architectural, mechanical, and biochemical alterations that contribute to the decline in cardiac function. Consequently, aging is a major risk factor for the development of heart disease, the leading cause of death in the developed world. In this review, we will summarize the classic and recently uncovered pathological changes within the aged heart with an emphasis on the mitochondria. Specifically, we describe the metabolic changes that occur in the aging heart as well as the loss of mitochondrial fitness and function and how these factors contribute to the decline in cardiomyocyte number. In addition, we highlight recent pharmacological, genetic, or behavioral therapeutic intervention advancements that may alleviate age-related cardiac decline.
Collapse
Affiliation(s)
- Arielys Mendoza
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, United States
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| | - Jason Karch
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, United States
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
2
|
Forseth B, Polfuss M, Brondino M, Hunter SD, Lawlor MW, Beatka MJ, Prom MJ, Eells J, Lyons JA. Adherence to and changes in mental and physiological health during an 8-week yoga intervention: A pilot study. J Bodyw Mov Ther 2022; 30:203-209. [DOI: 10.1016/j.jbmt.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/30/2021] [Accepted: 01/15/2022] [Indexed: 10/19/2022]
|
3
|
Tracy EP, Hughes W, Beare JE, Rowe G, Beyer A, LeBlanc AJ. Aging-Induced Impairment of Vascular Function: Mitochondrial Redox Contributions and Physiological/Clinical Implications. Antioxid Redox Signal 2021; 35:974-1015. [PMID: 34314229 PMCID: PMC8905248 DOI: 10.1089/ars.2021.0031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: The vasculature responds to the respiratory needs of tissue by modulating luminal diameter through smooth muscle constriction or relaxation. Coronary perfusion, diastolic function, and coronary flow reserve are drastically reduced with aging. This loss of blood flow contributes to and exacerbates pathological processes such as angina pectoris, atherosclerosis, and coronary artery and microvascular disease. Recent Advances: Increased attention has recently been given to defining mechanisms behind aging-mediated loss of vascular function and development of therapeutic strategies to restore youthful vascular responsiveness. The ultimate goal aims at providing new avenues for symptom management, reversal of tissue damage, and preventing or delaying of aging-induced vascular damage and dysfunction in the first place. Critical Issues: Our major objective is to describe how aging-associated mitochondrial dysfunction contributes to endothelial and smooth muscle dysfunction via dysregulated reactive oxygen species production, the clinical impact of this phenomenon, and to discuss emerging therapeutic strategies. Pathological changes in regulation of mitochondrial oxidative and nitrosative balance (Section 1) and mitochondrial dynamics of fission/fusion (Section 2) have widespread effects on the mechanisms underlying the ability of the vasculature to relax, leading to hyperconstriction with aging. We will focus on flow-mediated dilation, endothelial hyperpolarizing factors (Sections 3 and 4), and adrenergic receptors (Section 5), as outlined in Figure 1. The clinical implications of these changes on major adverse cardiac events and mortality are described (Section 6). Future Directions: We discuss antioxidative therapeutic strategies currently in development to restore mitochondrial redox homeostasis and subsequently vascular function and evaluate their potential clinical impact (Section 7). Antioxid. Redox Signal. 35, 974-1015.
Collapse
Affiliation(s)
- Evan Paul Tracy
- Department of Physiology, University of Louisville, Louisville, Kentucky, USA
| | - William Hughes
- Department of Medicine and Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jason E Beare
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Gabrielle Rowe
- Department of Physiology, University of Louisville, Louisville, Kentucky, USA
| | - Andreas Beyer
- Department of Medicine and Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Amanda Jo LeBlanc
- Department of Physiology, University of Louisville, Louisville, Kentucky, USA.,Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
4
|
No MH, Choi Y, Cho J, Heo JW, Cho EJ, Park DH, Kang JH, Kim CJ, Seo DY, Han J, Kwak HB. Aging Promotes Mitochondria-Mediated Apoptosis in Rat Hearts. Life (Basel) 2020; 10:life10090178. [PMID: 32899456 PMCID: PMC7555313 DOI: 10.3390/life10090178] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/16/2020] [Accepted: 09/04/2020] [Indexed: 12/26/2022] Open
Abstract
Aging represents a major risk for developing cardiac disease, including heart failure. The gradual deterioration of cell quality control with aging leads to cell death, a phenomenon associated with mitochondrial dysfunction in the heart. Apoptosis is an important quality control process and a necessary phenomenon for maintaining homeostasis and normal function of the heart. However, the mechanism of mitochondria-mediated apoptosis in aged hearts remains poorly understood. Here, we used male Fischer 344 rats of various ages, representing very young (1 month), young (4 months), middle-aged (12 months), and old (20 months) rats, to determine whether mitochondria-mediated apoptotic signals and apoptosis in the left ventricle of the heart are altered notably with aging. As the rats aged, the extramyocyte space and myocyte cross-sectional area in their left ventricle muscle increased, while the number of myocytes decreased. Additionally, mitochondrion-mediated apoptotic signals and apoptosis increased remarkably during aging. Therefore, our results demonstrate that aging promotes remarkable morphological changes and increases the degree of mitochondrion-mediated apoptosis in the left ventricle of rat hearts.
Collapse
Affiliation(s)
- Mi-Hyun No
- Department of Biomedical Science, Program in Biomedical Science & Engineering, Department of Kinesiology, Inha University, Incheon 22212, Korea; (M.-H.N.); (J.-W.H.); (E.-J.C.); (D.-H.P.)
| | - Youngju Choi
- Institute of Sports and Arts Convergence, Inha University, Incheon 22212, Korea; (Y.C.); (J.C.); (J.-H.K.)
| | - Jinkyung Cho
- Institute of Sports and Arts Convergence, Inha University, Incheon 22212, Korea; (Y.C.); (J.C.); (J.-H.K.)
| | - Jun-Won Heo
- Department of Biomedical Science, Program in Biomedical Science & Engineering, Department of Kinesiology, Inha University, Incheon 22212, Korea; (M.-H.N.); (J.-W.H.); (E.-J.C.); (D.-H.P.)
- Institute of Sports and Arts Convergence, Inha University, Incheon 22212, Korea; (Y.C.); (J.C.); (J.-H.K.)
| | - Eun-Jeong Cho
- Department of Biomedical Science, Program in Biomedical Science & Engineering, Department of Kinesiology, Inha University, Incheon 22212, Korea; (M.-H.N.); (J.-W.H.); (E.-J.C.); (D.-H.P.)
- Institute of Sports and Arts Convergence, Inha University, Incheon 22212, Korea; (Y.C.); (J.C.); (J.-H.K.)
| | - Dong-Ho Park
- Department of Biomedical Science, Program in Biomedical Science & Engineering, Department of Kinesiology, Inha University, Incheon 22212, Korea; (M.-H.N.); (J.-W.H.); (E.-J.C.); (D.-H.P.)
- Institute of Sports and Arts Convergence, Inha University, Incheon 22212, Korea; (Y.C.); (J.C.); (J.-H.K.)
| | - Ju-Hee Kang
- Institute of Sports and Arts Convergence, Inha University, Incheon 22212, Korea; (Y.C.); (J.C.); (J.-H.K.)
- Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Korea
| | - Chang-Ju Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Dae Yun Seo
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea; (D.Y.S.); (J.H.)
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea; (D.Y.S.); (J.H.)
| | - Hyo-Bum Kwak
- Department of Biomedical Science, Program in Biomedical Science & Engineering, Department of Kinesiology, Inha University, Incheon 22212, Korea; (M.-H.N.); (J.-W.H.); (E.-J.C.); (D.-H.P.)
- Institute of Sports and Arts Convergence, Inha University, Incheon 22212, Korea; (Y.C.); (J.C.); (J.-H.K.)
- Correspondence: ; Tel.: +82-32-860-8183; Fax: +82-32-860-8188
| |
Collapse
|
5
|
Eccardt AM, Pelzel RJ, Mattathil L, Moon YA, Mannino MH, Janowiak BE, Fisher JS. A peroxidase mimetic protects skeletal muscle cells from peroxide challenge and stimulates insulin signaling. Am J Physiol Cell Physiol 2020; 318:C1214-C1225. [PMID: 32348172 DOI: 10.1152/ajpcell.00167.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reactive oxygen species such as hydrogen peroxide have been implicated in causing metabolic dysfunction such as insulin resistance. Heme groups, either by themselves or when incorporated into proteins, have been shown to scavenge peroxide and demonstrate protective effects in various cell types. Thus, we hypothesized that a metalloporphyrin similar in structure to heme, Fe(III)tetrakis(4-benzoic acid)porphyrin (FeTBAP), would be a peroxidase mimetic that could defend cells against oxidative stress. After demonstrating that FeTBAP has peroxidase activity with reduced nicotinamide adenine dinucleotide phosphate (NADPH) and NADH as reducing substrates, we determined that FeTBAP partially rescued C2C12 myotubes from peroxide-induced insulin resistance as measured by phosphorylation of AKT (S473) and insulin receptor substrate 1 (IRS-1, Y612). Furthermore, we found that FeTBAP stimulates insulin signaling in myotubes and mouse soleus skeletal muscle to about the same level as insulin for phosphorylation of AKT, IRS-1, and glycogen synthase kinase 3β (S9). We found that FeTBAP lowers intracellular peroxide levels and protects against carbonyl formation in myotubes exposed to peroxide. Additionally, we found that FeTBAP stimulates glucose transport in myotubes and skeletal muscle to about the same level as insulin. We conclude that a peroxidase mimetic can blunt peroxide-induced insulin resistance and also stimulate insulin signaling and glucose transport, suggesting a possible role of peroxidase activity in regulation of insulin signaling.
Collapse
Affiliation(s)
- Amanda M Eccardt
- Department of Biology, Saint Louis University, St. Louis, Missouri
| | - Ross J Pelzel
- Department of Biology, Saint Louis University, St. Louis, Missouri
| | - Lyn Mattathil
- Department of Biology, Saint Louis University, St. Louis, Missouri
| | - Yerin A Moon
- Department of Biology, Saint Louis University, St. Louis, Missouri
| | - Mark H Mannino
- Department of Biology, Saint Louis University, St. Louis, Missouri
| | | | | |
Collapse
|
6
|
Natarajan V, Chawla R, Mah T, Vivekanandan R, Tan SY, Sato PY, Mallilankaraman K. Mitochondrial Dysfunction in Age-Related Metabolic Disorders. Proteomics 2020; 20:e1800404. [PMID: 32131138 DOI: 10.1002/pmic.201800404] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 02/07/2020] [Indexed: 12/16/2022]
Abstract
Aging is a natural biological process in living organisms characterized by receding bioenergetics. Mitochondria are crucial for cellular bioenergetics and thus an important contributor to age-related energetics deterioration. In addition, mitochondria play a major role in calcium signaling, redox homeostasis, and thermogenesis making this organelle a major cellular component that dictates the fate of a cell. To maintain its quantity and quality, mitochondria undergo multiple processes such as fission, fusion, and mitophagy to eliminate or replace damaged mitochondria. While this bioenergetics machinery is properly protected, the functional decline associated with age and age-related metabolic diseases is mostly a result of failure in such protective mechanisms. In addition, metabolic by-products like reactive oxygen species also aid in this destructive pathway. Mitochondrial dysfunction has always been thought to be associated with diseases. Moreover, studies in recent years have pointed out that aging contributes to the decay of mitochondrial health by promoting imbalances in key mitochondrial-regulated pathways. Hence, it is crucial to understand the nexus of mitochondrial dysfunction in age-related diseases. This review focuses on various aspects of basic mitochondrial biology and its status in aging and age-related metabolic diseases.
Collapse
Affiliation(s)
- Venkateswaran Natarajan
- Mitochondrial Physiology and Metabolism Lab, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Ritu Chawla
- Mitochondrial Physiology and Metabolism Lab, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Tania Mah
- Mitochondrial Physiology and Metabolism Lab, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Rajesh Vivekanandan
- Mitochondrial Physiology and Metabolism Lab, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Shu Yi Tan
- Mitochondrial Physiology and Metabolism Lab, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Priscila Y Sato
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, 19102-1902, USA
| | - Karthik Mallilankaraman
- Mitochondrial Physiology and Metabolism Lab, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- Center for Healthy Longevity, National University Health System, Singapore, 119228, Singapore
| |
Collapse
|
7
|
No MH, Heo JW, Yoo SZ, Kim CJ, Park DH, Kang JH, Seo DY, Han J, Kwak HB. Effects of aging and exercise training on mitochondrial function and apoptosis in the rat heart. Pflugers Arch 2020; 472:179-193. [PMID: 32048000 DOI: 10.1007/s00424-020-02357-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/18/2020] [Accepted: 02/04/2020] [Indexed: 12/13/2022]
Abstract
Aging is associated with vulnerability to cardiovascular diseases, and mitochondrial dysfunction plays a critical role in cardiovascular disease pathogenesis. Exercise training is associated with benefits against chronic cardiac diseases. The purpose of this study was to determine the effects of aging and treadmill exercise training on mitochondrial function and apoptosis in the rat heart. Fischer 344 rats were divided into young sedentary (YS; n = 10, 4 months), young exercise (YE; n = 10, 4 months), old sedentary (OS; n = 10, 20 months), and old exercise (OE; n = 10, 20 months) groups. Exercise training groups ran on a treadmill at 15 m/min (young) or 10 m/min (old), 45 min/day, 5 days/week for 8 weeks. Morphological parameters, mitochondrial function, mitochondrial dynamics, mitophagy, and mitochondria-mediated apoptosis were analyzed in cardiac muscle. Mitochondrial O2 respiratory capacity and Ca2+ retention capacity gradually decreased, and mitochondrial H2O2 emitting potential significantly increased with aging. Exercise training attenuated aging-induced mitochondrial H2O2 emitting potential and mitochondrial O2 respiratory capacity, while protecting Ca2+ retention in the old groups. Aging triggered imbalanced mitochondrial dynamics and excess mitophagy, while exercise training ameliorated the aging-induced imbalance in mitochondrial dynamics and excess mitophagy. Aging induced increase in Bax and cleaved caspase-3 protein levels, while decreasing Bcl-2 levels. Exercise training protected against the elevation of apoptotic signaling markers by decreasing Bax and cleaved caspase-3 and increasing Bcl-2 protein levels, while decreasing the Bax/Bcl-2 ratio and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive myonuclei. These data demonstrate that regular exercise training prevents aging-induced impairment of mitochondrial function and mitochondria-mediated apoptosis in cardiac muscles.
Collapse
Affiliation(s)
- Mi-Hyun No
- Department of Kinesiology, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Jun-Won Heo
- Department of Kinesiology, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Su-Zi Yoo
- Department of Kinesiology, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Chang-Ju Kim
- Department of Physiology, Kyung Hee University, Seoul, South Korea
| | - Dong-Ho Park
- Department of Kinesiology, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Ju-Hee Kang
- Department of Pharmacology and Medicinal Toxicology Research Center, Inha University School of Medicine, Incheon, South Korea
| | - Dae-Yun Seo
- Department of Physiology and Cardiovascular and Metabolic Disease Center, Inje University School of Medicine, Busan, South Korea
| | - Jin Han
- Department of Physiology and Cardiovascular and Metabolic Disease Center, Inje University School of Medicine, Busan, South Korea
| | - Hyo-Bum Kwak
- Department of Kinesiology, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea.
| |
Collapse
|
8
|
Hamilton S, Terentyev D. Altered Intracellular Calcium Homeostasis and Arrhythmogenesis in the Aged Heart. Int J Mol Sci 2019; 20:ijms20102386. [PMID: 31091723 PMCID: PMC6566636 DOI: 10.3390/ijms20102386] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/29/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022] Open
Abstract
Aging of the heart is associated with a blunted response to sympathetic stimulation, reduced contractility, and increased propensity for arrhythmias, with the risk of sudden cardiac death significantly increased in the elderly population. The altered cardiac structural and functional phenotype, as well as age-associated prevalent comorbidities including hypertension and atherosclerosis, predispose the heart to atrial fibrillation, heart failure, and ventricular tachyarrhythmias. At the cellular level, perturbations in mitochondrial function, excitation-contraction coupling, and calcium homeostasis contribute to this electrical and contractile dysfunction. Major determinants of cardiac contractility are the intracellular release of Ca2+ from the sarcoplasmic reticulum by the ryanodine receptors (RyR2), and the following sequestration of Ca2+ by the sarco/endoplasmic Ca2+-ATPase (SERCa2a). Activity of RyR2 and SERCa2a in myocytes is not only dependent on expression levels and interacting accessory proteins, but on fine-tuned regulation via post-translational modifications. In this paper, we review how aberrant changes in intracellular Ca2+ cycling via these proteins contributes to arrhythmogenesis in the aged heart.
Collapse
Affiliation(s)
- Shanna Hamilton
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Dmitry Terentyev
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
9
|
Effects of Acute Exercise on Mitochondrial Function, Dynamics, and Mitophagy in Rat Cardiac and Skeletal Muscles. Int Neurourol J 2019; 23:S22-31. [PMID: 30832464 PMCID: PMC6433208 DOI: 10.5213/inj.1938038.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 02/12/2019] [Indexed: 12/16/2022] Open
Abstract
Purpose This study aimed to investigate the effects of single-bout exercise on mitochondrial function, dynamics (fusion, fission), and mitophagy in cardiac and skeletal muscles. Methods Fischer 344 rats (4 months old) were randomly divided into the control (CON) or acute exercise (EX) group (n=10 each). The rats performed a single bout of treadmill exercise for 60 minutes. Mitochondrial function (e.g., O2 respiration, H2O2 emission, Ca2+ retention capacity), mitochondrial fusion (e.g., Mfn1, Mfn2, Opa1), mitochondrial fission (e.g., Drp1, Fis1), and mitophagy (e.g., Parkin, Pink1, LC3II, Bnip3) were measured in permeabilized cardiac (e.g., left ventricle) and skeletal (e.g., soleus, white gastrocnemius) muscles. Results Mitochondrial O2 respiration and Ca2+ retention capacity were significantly increased in all tissues of the EX group compared with the CON group. Mitochondrial H2O2 emissions showed tissue-specific results; the emissions showed no significant differences in the left ventricle or soleus (type I fibers) but was significantly increased in the white gastrocnemius (type II fibers) after acute exercise. Mitochondrial fusion and fission were not altered in any tissues of the EX group. Mitophagy showed tissue-specific differences: It was not changed in the left ventricle or white gastrocnemius, whereas Parkin and LC3II were significantly elevated in the soleus muscle. Conclusions A single bout of aerobic exercise may improve mitochondrial function (e.g., O2 respiration and Ca2+ retention capacity) in the heart and skeletal muscles without changes in mitochondrial dynamics or mitophagy.
Collapse
|