2
|
Graceffa V. Therapeutic Potential of Reactive Oxygen Species: State of the Art and Recent Advances. SLAS Technol 2020; 26:140-158. [PMID: 33345675 DOI: 10.1177/2472630320977450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In the last decade, several studies have proven that when at low concentration reactive oxygen species (ROS) show an adaptive beneficial effect and posited the idea that they can be utilized as inexpensive and convenient inducers of tissue regeneration. On the other hand, the recent discovery that cancer cells are more sensitive to oxidative damage paved the way for their use in the selective killing of tumor cells, and sensors to monitor ROS production during cancer treatment are under extensive investigation. Nevertheless, although ROS-activated signaling pathways are well established, less is known about the mechanisms underlying the switch from an anabolic to a cytotoxic response. Furthermore, a high variability in biological response is observed between different modalities of administration, cell types, donor ages, eventual concomitant diseases, and external microenvironment. On the other hand, available preclinical studies are scarce, whereas the quest for the most suitable systems for in vivo delivery is still elusive. Furthermore, new strategies to control the temporal pattern of ROS release need to be developed, if considering their tumorigenic potential. This review initially discusses ROS mechanisms of action and their potential application in stem cell biology, tissue engineering, and cancer therapy. It then outlines the state of art of ROS-based drugs and identifies challenges faced in translating ROS research into clinical practice.
Collapse
Affiliation(s)
- Valeria Graceffa
- Cellular Health and Toxicology Research Group (CHAT), Institute of Technology Sligo, Bellanode, Sligo, Ireland.,Department of Life Sciences, Institute of Technology Sligo, Bellanode, Sligo, Ireland
| |
Collapse
|
3
|
Akhmetova A, Saliev T, Allan IU, Illsley MJ, Nurgozhin T, Mikhalovsky S. A Comprehensive Review of Topical Odor-Controlling Treatment Options for Chronic Wounds. J Wound Ostomy Continence Nurs 2017; 43:598-609. [PMID: 27684356 PMCID: PMC5098468 DOI: 10.1097/won.0000000000000273] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The process of wound healing is often accompanied by bacterial infection or critical colonization, resulting in protracted inflammation, delayed reepithelization, and production of pungent odors. The malodor produced by these wounds may lower health-related quality of life and produce psychological discomfort and social isolation. Current management focuses on reducing bacterial activity within the wound site and absorbing malodorous gases. For example, charcoal-based materials have been incorporated into dressing for direct adsorption of the responsible gases. In addition, multiple topical agents, including silver, iodine, honey, sugar, and essential oils, have been suggested for incorporation into dressings in an attempt to control the underlying bacterial infection. This review describes options for controlling malodor in chronic wounds, the benefits and drawbacks of each topical agent, and their mode of action. We also discuss the use of subjective odor evaluation techniques to assess the efficacy of odor-controlling therapies. The perspectives of employing novel biomaterials and technologies for wound odor management are also presented.
Collapse
Affiliation(s)
- Alma Akhmetova
- Alma Akhmetova, BSc, Laboratory of Experimental and Clinical Pharmacology and Pharmacy, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Timur Saliev, MD, PhD, Laboratory of Translational Medicine and Life Sciences Technologies, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Iain U. Allan, PhD, School of Biomaterials and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
- Matthew J. Illsley, PhD, School of Biomaterials and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
- Talgat Nurgozhin, MD, PhD, Laboratory of Experimental and Clinical Pharmacology and Pharmacy, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Sergey Mikhalovsky, PhD, School of Biomaterials and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom; and School of Engineering, Nazarbayev University, Astana, Kazakhstan
| | - Timur Saliev
- Correspondence: Timur Saliev, MD, PhD, Centre for Life Sciences, Nazarbayev University, Unit 9, 53 Kabanbay batyr Ave, Astana 010000, Kazakhstan ()
| | - Iain U. Allan
- Alma Akhmetova, BSc, Laboratory of Experimental and Clinical Pharmacology and Pharmacy, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Timur Saliev, MD, PhD, Laboratory of Translational Medicine and Life Sciences Technologies, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Iain U. Allan, PhD, School of Biomaterials and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
- Matthew J. Illsley, PhD, School of Biomaterials and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
- Talgat Nurgozhin, MD, PhD, Laboratory of Experimental and Clinical Pharmacology and Pharmacy, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Sergey Mikhalovsky, PhD, School of Biomaterials and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom; and School of Engineering, Nazarbayev University, Astana, Kazakhstan
| | - Matthew J. Illsley
- Alma Akhmetova, BSc, Laboratory of Experimental and Clinical Pharmacology and Pharmacy, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Timur Saliev, MD, PhD, Laboratory of Translational Medicine and Life Sciences Technologies, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Iain U. Allan, PhD, School of Biomaterials and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
- Matthew J. Illsley, PhD, School of Biomaterials and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
- Talgat Nurgozhin, MD, PhD, Laboratory of Experimental and Clinical Pharmacology and Pharmacy, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Sergey Mikhalovsky, PhD, School of Biomaterials and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom; and School of Engineering, Nazarbayev University, Astana, Kazakhstan
| | - Talgat Nurgozhin
- Alma Akhmetova, BSc, Laboratory of Experimental and Clinical Pharmacology and Pharmacy, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Timur Saliev, MD, PhD, Laboratory of Translational Medicine and Life Sciences Technologies, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Iain U. Allan, PhD, School of Biomaterials and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
- Matthew J. Illsley, PhD, School of Biomaterials and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
- Talgat Nurgozhin, MD, PhD, Laboratory of Experimental and Clinical Pharmacology and Pharmacy, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Sergey Mikhalovsky, PhD, School of Biomaterials and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom; and School of Engineering, Nazarbayev University, Astana, Kazakhstan
| | - Sergey Mikhalovsky
- Alma Akhmetova, BSc, Laboratory of Experimental and Clinical Pharmacology and Pharmacy, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Timur Saliev, MD, PhD, Laboratory of Translational Medicine and Life Sciences Technologies, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Iain U. Allan, PhD, School of Biomaterials and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
- Matthew J. Illsley, PhD, School of Biomaterials and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
- Talgat Nurgozhin, MD, PhD, Laboratory of Experimental and Clinical Pharmacology and Pharmacy, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Sergey Mikhalovsky, PhD, School of Biomaterials and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom; and School of Engineering, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
5
|
A Pilot Randomized, Controlled Study of Nanocrystalline Silver, Manuka Honey, and Conventional Dressing in Healing Diabetic Foot Ulcer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:5294890. [PMID: 28239398 PMCID: PMC5296609 DOI: 10.1155/2017/5294890] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/03/2016] [Accepted: 12/13/2016] [Indexed: 01/10/2023]
Abstract
Nanocrystalline silver (nAg) and Manuka honey (MH) dressing have increasing popularity for treating diabetic foot ulcer (DFU). This study was an open-label randomized controlled trial with three parallel groups' design in examining the preliminary effectiveness of nAg against MH and conventional dressing in healing DFU in terms of ulcer healing, ulcer infection, and inflammation. 31 participants (11 in the nAg group, 10 in the MH group, and 10 in the convention group) diagnosed with type 2 diabetes were enrolled. Wound cleaning, debridement, and topical dressing application were performed according to the group allocation in each visit at weeks 1, 2, 3, 4, 6, 8, 10, and 12. The results found that the proportions of complete ulcer healing were 81.8%, 50%, and 40% in the nAg, MH, and conventional groups, respectively. The ulcer size reduction rate was potentially higher in the nAg group (97.45%) than the MH group (86.21%) and the conventional group (75.17%). In bacteriology, nAg showed a greater rate of microorganism reduction although it was not significant. To conclude, nAg alginate was potentially superior to MH and conventional dressing in healing diabetic foot ulcer in terms of ulcer size reduction rate.
Collapse
|
8
|
Tsang KK, Kwong EWY, Woo KY, To TSS, Chung JWY, Wong TKS. The Anti-Inflammatory and Antibacterial Action of Nanocrystalline Silver and Manuka Honey on the Molecular Alternation of Diabetic Foot Ulcer: A Comprehensive Literature Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:218283. [PMID: 26290672 PMCID: PMC4531195 DOI: 10.1155/2015/218283] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 07/10/2015] [Accepted: 07/14/2015] [Indexed: 01/09/2023]
Abstract
Honey and silver have been used since ancient times for treating wounds. Their widespread clinical application has attracted attention in light of the increasing prevalence of antibiotic-resistant bacteria. While there have been a number of studies exploring the anti-inflammatory and antibacterial effects of manuka honey and nanocrystalline silver, their advantages and limitations with regard to the treatment of chronic wounds remain a subject of debate. The aim of this paper is to examine the evidence on the use of nanocrystalline silver and manuka honey for treating diabetic foot ulcers through a critical and comprehensive review of in vitro studies, animal studies, and in vivo studies. The findings from the in vitro and animal studies suggest that both agents have effective antibacterial actions. Their anti-inflammatory action and related impact on wound healing are unclear. Besides, there is no evidence to suggest that any topical agent is more effective for use in treating diabetic foot ulcer. Overall, high-quality, clinical human studies supported by findings from the molecular science on the use of manuka honey or nanocrystalline silver are lacking. There is a need for rigorously designed human clinical studies on the subject to fill this knowledge gap and guide clinical practice.
Collapse
Affiliation(s)
- Ka-Kit Tsang
- O&T Department, Queen Elizabeth Hospital, Hong Kong
- Department of Nursing, The Hong Kong Polytechnic University, Hong Kong
| | | | - Kevin Y. Woo
- School of Nursing, Faculty of Health Sciences, Queen's University, Kingston, ON, Canada
| | - Tony Shing-Shun To
- Department of Health Technology & Informatics, The Hong Kong Polytechnic University, Hong Kong
| | - Joanne Wai-Yee Chung
- The Faculty of Liberal Arts and Social Sciences, The Hong Kong Institute of Education, Hong Kong
| | | |
Collapse
|
12
|
Abdulrhman M, Elbarbary NS, Ahmed Amin D, Saeid Ebrahim R. Honey and a mixture of honey, beeswax, and olive oil-propolis extract in treatment of chemotherapy-induced oral mucositis: a randomized controlled pilot study. Pediatr Hematol Oncol 2012; 29:285-92. [PMID: 22475306 DOI: 10.3109/08880018.2012.669026] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In spite of being one of the most investigated subjects among supportive care in cancer, no therapy has been found effective in treatment of chemotherapy-induced oral mucositis. Based on the observations that honey bees products have anti-inflammatory and wound healing effects, the present study tried to evaluate the effect of topical application of honey and a mixture of honey, olive oil-propolis extract, and beeswax (HOPE) in treatment of oral mucositis. This was a randomized controlled clinical trial conducted on 90 patients with acute lymphoblastic leukemia and oral mucositis grades 2 and 3. The mean age of enrolled patients was 6.9 years. The patients were assigned into 3 equal treatment groups: Honey, HOPE, and control groups. Topical treatment for each patient consists of honey, HOPE, and benzocaine gel for honey, HOPE, and control groups, respectively. Recovery time in grade 2 mucositis was significantly reduced in the honey group as compared with either HOPE or controls (P < .05). In grade 3 mucositis, recovery time did not differ significantly between honey and HOPE (P = 0.61) but compared with controls, healing was faster with either honey or HOPE (P < .01). Generally, in both grades of mucositis, honey produced faster healing than either HOPE or controls (P < .05). Based on our results that showed that honey produced faster healing in patients with grade 2/3 chemotherapy-induced mucositis, we recommend using honey and possibly other bee products and olive oil in future therapeutic trials targeting chemotherapy-induced mucositis.
Collapse
Affiliation(s)
- Mamdouh Abdulrhman
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | | | | | | |
Collapse
|