1
|
Bajuri MY, Nordin A. Activated carbon cloth versus silver-based dressings in a population with diabetic foot ulcer: a randomised controlled trial. J Wound Care 2024; 33:298-303. [PMID: 38683771 DOI: 10.12968/jowc.2024.33.5.298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
OBJECTIVE Activated carbon cloth (ACC), known as Zorflex dressing, has emerged as an innovative approach in managing bacterial infection in diabetic foot ulcer (DFU) treatment. This pilot study was undertaken to determine the efficacy of Zorflex ACC dressing (Chemviron Carbon Cloth Division, UK) compared to standard silver-based dressing on DFUs. METHOD An open label, comparative, randomised controlled trial enrolling patients who attended the diabetic foot clinic was conducted between August 2022 and August 2023. The primary endpoint was a difference of 20% in wound area reduction with the ACC dressing compared to silver-based dressing within eight weeks. The secondary endpoints were proportion of complete healing, time to healing and adverse events. RESULTS The cohort comprised 40 patients. The mean wound reduction percentage at 8 weeks for patients in the ACC arm was 85.40±16.00% compared with 65.08±16.36% in the silver-based dressing arm. Complete healing was observed in six of 20 patients in the ACC arm compared to two of 20 in the silver-based dressing arm. CONCLUSION These data suggest that the ACC dressing promotes better ulcer healing in DFU patients than the silver-based dressing.
Collapse
Affiliation(s)
- Mohd Yazid Bajuri
- Department of Orthopaedics and Traumatology, Hospital Canselor Tunku Muhriz, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak 56000 Cheras, Malaysia
| | - Abid Nordin
- Department of Orthopaedics and Traumatology, Hospital Canselor Tunku Muhriz, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak 56000 Cheras, Malaysia
| |
Collapse
|
2
|
Malone M, Nygren E, Hamberg T, Radzieta M, Jensen SO. In vitro and in vivo evaluation of the antimicrobial effectiveness of non-medicated hydrophobic wound dressings. Int Wound J 2024; 21:e14416. [PMID: 37770025 PMCID: PMC10824701 DOI: 10.1111/iwj.14416] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/03/2023] Open
Abstract
There is an increasing use of non-medicated wound dressing with claims of irreversible bacterial binding. Most of the data are from in vitro models which lack clinical relevance. This study employed a range of in vitro experiments to address this gap and we complemented our experimental designs with in vivo observations using dressings obtained from patients with diabetes-related foot ulcers. A hydrophobic wound dressing was compared with a control silicone dressing in vitro. Test dressings were placed on top of a Pseudomonas aeruginosa challenge suspension with increasing concentrations of suspension inoculum in addition to supplementation with phosphate buffered saline (PBS) or increased protein content (IPC). Next, we used the challenge suspensions obtained at the end of the first experiment, where bacterial loads from the suspensions were enumerated following test dressing exposure. Further, the time-dependent bacterial attachment was investigated over 1 and 24 h. Lastly, test dressings were exposed to a challenge suspension with IPC, with or without the addition of the bacteriostatic agent Deferiprone to assess the impacts of limiting bacterial growth in the experimental design. Lastly, two different wound dressings with claims of bacterial binding were obtained from patients with chronic diabetes-related foot ulcers after 72 h of application and observed using scanning electron microscope (SEM). Bacteria were enumerated from each dressing after a 1-h exposure time. There was no statistical difference in bacterial attachment between both test dressings when using different suspension inoculum concentrations or test mediums. Bacterial attachment to the two test dressings was significantly lower (p < 0.0001) when IPC was used instead of PBS. In the challenge suspension with PBS, only the hydrophobic dressing achieved a statistically significant reduction in bacterial loads (0.5 ± 0.05 log colony forming units; p = 0.001). In the presence of IPC, there was no significant reduction in bacterial loads for either test dressing. When bacterial growth was arrested, attachment to the test dressings did not increase over time, suggesting that the number of bacteria on the test dressings increases over time due to bacterial growth. SEM identified widespread adsorption of host fouling across the test dressings which occurred prior to microbial binding. Therein, microbial attachment occurred predominantly to host fouling and not directly to the dressings. Bacterial binding is not unique to dialkylcarbamoyl chloride (DACC) dressings and under clinically relevant in vitro conditions and in vivo observations, we demonstrate (in addition to previously published work) that the bacterial binding capabilities are not effective at reducing the number of bacteria in laboratory models or human wounds.
Collapse
Affiliation(s)
- Matthew Malone
- Research and DevelopmentMolnlycke Healthcare ABGothenburgSweden
- South West Sydney Limb Preservation and Wound ResearchSouth West Sydney Local Health DistrictSydneyNew South WalesAustralia
- Infectious Diseases and Microbiology, School of MedicineWestern Sydney UniversitySydneyNew South WalesAustralia
| | - Erik Nygren
- Research and DevelopmentMolnlycke Healthcare ABGothenburgSweden
| | - Tina Hamberg
- Research and DevelopmentMolnlycke Healthcare ABGothenburgSweden
| | - Michael Radzieta
- South West Sydney Limb Preservation and Wound ResearchSouth West Sydney Local Health DistrictSydneyNew South WalesAustralia
- Infectious Diseases and Microbiology, School of MedicineWestern Sydney UniversitySydneyNew South WalesAustralia
| | - Slade O. Jensen
- South West Sydney Limb Preservation and Wound ResearchSouth West Sydney Local Health DistrictSydneyNew South WalesAustralia
- Infectious Diseases and Microbiology, School of MedicineWestern Sydney UniversitySydneyNew South WalesAustralia
| |
Collapse
|
3
|
Sadat Z, Farrokhi-Hajiabad F, Lalebeigi F, Naderi N, Ghafori Gorab M, Ahangari Cohan R, Eivazzadeh-Keihan R, Maleki A. A comprehensive review on the applications of carbon-based nanostructures in wound healing: from antibacterial aspects to cell growth stimulation. Biomater Sci 2022; 10:6911-6938. [PMID: 36314845 DOI: 10.1039/d2bm01308h] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A wound is defined as damage to the integrity of biological tissue, including skin, mucous membranes, and organ tissues. The treatment of these injuries is an important challenge for medical researchers. Various materials have been used for wound healing and dressing applications among which carbon nanomaterials have attracted significant attention due to their remarkable properties. In the present review, the latest studies on the application of carbon nanomaterials including graphene oxide (GO), reduced graphene oxide (rGO), carbon dots (CDs), carbon quantum dots (CQDs), carbon nanotubes (CNTs), carbon nanofibers (CNFs), and nanodiamonds (NDs) in wound dressing applications are evaluated. Also, a variety of carbon-based nanocomposites with advantages such as biocompatibility, hemocompatibility, reduced wound healing time, antibacterial properties, cell-adhesion, enhanced mechanical properties, and enhanced permeability to oxygen has been reported for the treatment of various wounds.
Collapse
Affiliation(s)
- Zahra Sadat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Farzaneh Farrokhi-Hajiabad
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Farnaz Lalebeigi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Nooshin Naderi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Mostafa Ghafori Gorab
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Reza Ahangari Cohan
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| | - Reza Eivazzadeh-Keihan
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| |
Collapse
|
4
|
Hassen JH, Abdulkadir HK. Recent developments in the use of activated charcoal in medicine. JOURNAL OF MEDICAL SCIENCE 2022. [DOI: 10.20883/medical.e647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
One of the raw forms of graphite is activated charcoal which has an extensive surface area allowing for the adsorption of a wide range of chemicals. It possesses the strongest physical adsorption forces of the available materials, as well as the largest volume of adsorbing porosity. Activated charcoal acts as an adsorbent, collecting and storing substances in the gastrointestinal tract, reducing or blocking absorption in the bloodstream. The ingested toxins interact with charcoal by recycling toxins in the intestinal cavity. In cases where the drug has not been absorbed from the abdominal system, it is recirculated through the liver and intestines or by means of passive diffusion or active secretion. The article aims to review the most recent advances in the use of the activated charcoal, including the dose, how charcoal acts in the body, the mechanism of action, administration, contraindications, as well as the impact of various factors on the adsorption process. In addition, we also discussed numerous medical applications of activated charcoal.
Collapse
|
5
|
Karahan HE, Ji M, Pinilla JL, Han X, Mohamed A, Wang L, Wang Y, Zhai S, Montoya A, Beyenal H, Chen Y. Biomass-derived nanocarbon materials for biological applications: challenges and prospects. J Mater Chem B 2020; 8:9668-9678. [PMID: 33000843 DOI: 10.1039/d0tb01027h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biomass-derived nanocarbons (BNCs) have attracted significant research interests due to their promising economic and environmental benefits. Following their extensive uses in physical and chemical research domains, BNCs are now growing in biological applications. However, their practical biological applications are still in their infancy, requiring critical evaluations and strategic directions, which are provided in this review. The carbonization of biomass sources and major types of BNCs are introduced, encompassing carbon nanodots, nanofibres, nanotubes, and graphenes. Next, essential biological uses of BNCs, antibacterial/antibiofilm materials (nanofibres and nanodots) and bioimaging agents (predominantly nanodots), are summarized. Furthermore, the future potential of BNCs, for designing wound dressing/healing materials, water and air disinfection platforms, and microbial electrochemical systems, is discussed. We reach the conclusion that a crucial challenge is the structural control of BNCs. Furthermore, a key knowledge gap for realizing practical biological applications is the lack of systematic comparisons of BNCs with nanocarbons of synthetic origin in the current literature. Although we did not attempt to perform an exhaustive literature survey, the evaluation of the existing results indicates that BNCs are promising as easily accessible materials for various biomedically and environmentally relevant applications.
Collapse
Affiliation(s)
- H Enis Karahan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Therapeutic potential of green synthesized silver nanoparticles loaded PVA hydrogel patches for wound healing. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101308] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Cooper R, Kirketerp-Møller K. Non-antibiotic antimicrobial interventions and antimicrobial stewardship in wound care. J Wound Care 2019; 27:355-377. [PMID: 29883284 DOI: 10.12968/jowc.2018.27.6.355] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Control of wound infection today relies largely on antibiotics, but the continual emergence of antibiotic-resistant microorganisms threatens a return to the pre-antibiotic era when physicians used antiseptics to prevent and manage infection. Some of those antiseptics are still used today, and others have become available. A diverse variety of non-antibiotic antimicrobial interventions are found on modern formularies. Unlike the mode of action of antibiotics, which affect specific cellular target sites of pathogens, many non-antibiotic antimicrobials affect multiple cellular target sites in a non-specific way. Although this reduces the likelihood of selecting for resistant strains of microorganisms, some have emerged and cross-resistance between antibiotics and antiseptics has been detected. With the prospect of a post-antibiotic era looming, ways to maintain and extend our antimicrobial armamentarium must be found. In this narrative review, current and emerging non-antibiotic antimicrobial strategies will be considered and the need for antimicrobial stewardship in wound care will be explained.
Collapse
Affiliation(s)
- Rose Cooper
- Professor of Microbiology, Department of Biomedical Science, Cardiff School of Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff, UK
| | - Klaus Kirketerp-Møller
- Orthopaedic Surgeon, Copenhagen Wound Healing Center, Department of Dermatology and Wounds, Bispebjerg University Hospital, Bispebjerg Bakke 23, DK-2400 Copenhagen NV
| |
Collapse
|
8
|
Sharifuddin SAB, Ismail SB, Abdullah I, Mohamad I, Shaikh Mohammed J. Antibacterial evaluation of activated carbon cloth with Ag+ impregnated with ZnO nanoparticles. ACTA ACUST UNITED AC 2019. [DOI: 10.1108/rjta-09-2018-0056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
Staphylococcus aureus (S. aureus), Klebsiella pneumoniae (K. pneumoniae) and Streptococcus pneumoniae (S. pneumoniae) are among the pathogens detected during Hajj pilgrimage known to cause pneumonia. This study aims to evaluate the antibacterial activity of activated carbon cloth (ACC) with Ag+ impregnated with zinc oxide nanoparticles (ZnO NPs) against these pathogens.
Design/methodology/approach
ZnO NPs were impregnated into ACC-Ag+ via layer-by-layer (LbL) self-assembly. Scanning electron microscope (SEM) was used to observe the fine surface morphological details of the ACC-Ag+-ZnO sheets. Antibacterial activity of the ACC-Ag+-ZnO sheets was evaluated using the disk-diffusion susceptibility assay. Allergy patch test was done to evaluate allergic reactions of the ACC-Ag+-ZnO sheets on human skin.
Findings
SEM micrographs showed successful impregnation of ZnO NPs into the ACC-Ag+ sheets. Disk-diffusion susceptibility assay results of ACC-Ag+-ZnO sheets against S. aureus, K. pneumoniae and S. pneumoniae showed good antibacterial activity; with 1.82 ± 0.13 mm zone of inhibition for S. pneumoniae, at a ZnO concentration of 0.78 mg mL-1. No signs of human skin irritation were observed throughout the allergy patch test.
Originality/value
Results indicate that ACC-Ag+-ZnO sheets could potentially be embedded within surgical face masks (pilgrims’ preferred) to reduce the risks involved with the transmission of respiratory tract infections during and after mass gatherings (e.g. Hajj/Umrah, Olympics).
Collapse
|
9
|
Wu X, Liu R, Lao TT. Therapeutic compression materials and wound dressings for chronic venous insufficiency: A comprehensive review. J Biomed Mater Res B Appl Biomater 2019; 108:892-909. [PMID: 31339655 DOI: 10.1002/jbm.b.34443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/06/2019] [Accepted: 06/28/2019] [Indexed: 01/15/2023]
Abstract
Chronic venous insufficiency (CVI) is a common disorder worldwide. Related pathophysiological mechanisms reportedly involve venous pooling and reduced venous return, leading to heaviness, aching, itchiness, tiredness, varicosities, pigmentation, and even lower limb ulceration. Approaches adopted to manage CVI at various stages of clinical-etiology-anatomy-pathophysiology include compression therapy, pharmacological treatment, ultrasound treatment, surgery, electrical or wireless microcurrent stimulation, and pulsed electromagnetic treatment. Among these, polymer-based therapeutic compression materials and wound dressings play increasingly key roles in treating all stages of CVI because of their unique physical, mechanical, chemical, and biological functions. However, the characteristics, working mechanisms, and effectiveness of these CVI treatment materials are not comprehensively understood. The present systematic review examines the structures, properties, types, and applications of various polymer-based compression materials and wound dressings used in prophylaxis and treatment of CVI. Existing problems, limitations, and future trends of CVI treatment materials are also discussed. This review could contribute to the design and application of new functional polymer materials and dressings to enhance the efficiency of CVI treatments, thereby facilitating patients' self-care ability and long-term health improvement.
Collapse
Affiliation(s)
- Xinbo Wu
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Rong Liu
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Terence T Lao
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
10
|
Bui UT, Finlayson K, Edwards H. The diagnosis of infection in chronic leg ulcers: A narrative review on clinical practice. Int Wound J 2019; 16:601-620. [PMID: 30697930 PMCID: PMC7948879 DOI: 10.1111/iwj.13069] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/20/2018] [Accepted: 12/28/2018] [Indexed: 12/17/2022] Open
Abstract
This literature review aimed to provide a narrative review of evidence on validity of clinical and microbial indicators of infection and to gain insights into the diagnosis of infection in chronic leg ulcers (CLUs). A search was conducted in Cinahl, Medline, the Cochrane Library databases, Embase, Web of Science, ScienceDirect, Pubmed, PsycINFO, ProQuest dissertations, and Google Scholar from January 1990 to July 2017. The inclusion criteria were original studies, systematic reviews, and consensus documents focused on "infection" in CLUs, English language, clinical and community settings, and human. The reviewed studies were inconsistent in criteria for infection between investigated wound types and lack of specificity regarding wound types. There were few studies investigating the criteria for diagnosis of infection in leg ulcers. The identification of leg ulcer infection still remains problematic and relies on out-of-date and not uniform evidence. Literature in this area was mostly limited to level III and IV evidence based on The Australian National Health and Medical Research Council Levels of Evidence, or expert opinion. This literature review showed seven clinical signs and symptoms that could be diagnostic for infection in CLUs, including: new, increased, or altered ulcer pain; malodour; increased ulcer area; wound breakdown, delayed or non-healing; and erythema and increased local temperature, whilst the microbial indicators used to diagnose infected leg ulcers were varied and regarded as less important.
Collapse
Affiliation(s)
- Ut T. Bui
- School of Nursing, Institute of Health and Biomedical Innovation, Faculty of HealthQueensland University of TechnologyKelvin GroveQueenslandAustralia
| | - Kathleen Finlayson
- School of Nursing, Institute of Health and Biomedical Innovation, Faculty of HealthQueensland University of TechnologyKelvin GroveQueenslandAustralia
| | - Helen Edwards
- School of Nursing, Institute of Health and Biomedical Innovation, Faculty of HealthQueensland University of TechnologyKelvin GroveQueenslandAustralia
| |
Collapse
|
11
|
Atkin L, Bućko Z, Montero EC, Cutting K, Moffatt C, Probst A, Romanelli M, Schultz GS, Tettelbach W. Implementing TIMERS: the race against hard-to-heal wounds. J Wound Care 2019; 23:S1-S50. [DOI: 10.12968/jowc.2019.28.sup3a.s1] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Leanne Atkin
- Vascular Nurse Consultant. Mid Yorkshire NHS Trust/University of Huddersfield, England
| | - Zofia Bućko
- Head of Non-Healing Wounds Department, Centrum Medycznym HCP, Poznań, Poland
| | - Elena Conde Montero
- Specialist in Dermatology. Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Keith Cutting
- Clinical Research Consultant, Hertfordshire, Honorary, Tissue Viability Specialist, First Community Health and Care, Surrey, England
| | - Christine Moffatt
- Professor of Clinical Nursing Research, University of Nottingham, and Nurse Consultant, Derby Hospitals NHS Foundation Trust Lymphoedema Service, England
| | - Astrid Probst
- Advanced Nurse Practitioner Wound Care, Klinikum am Steinenberg/Ermstalklinik, Reutlingen, Germany
| | - Marco Romanelli
- President WUWHS, Associate Professor of Dermatology, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Gregory S Schultz
- Researcher, Professor of Obstetrics and Gynaecology, University of Florida, Gainesville, Florida, US
| | - William Tettelbach
- Associate Chief Medical Officer, MiMedx, Georgia. Adjunct Assistant Professor, Duke University School of Medicine, Durham, North Carolina. Medical Director of Wound Care and Infection Prevention, Landmark Hospital, Salt Lake City, Utah, US
| |
Collapse
|