1
|
Fang Y, Han Y, Yang L, Kankala RK, Wang S, Chen A, Fu C. Conductive hydrogels: intelligent dressings for monitoring and healing chronic wounds. Regen Biomater 2024; 12:rbae127. [PMID: 39776855 PMCID: PMC11703555 DOI: 10.1093/rb/rbae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 01/11/2025] Open
Abstract
Conductive hydrogels (CHs) represent a burgeoning class of intelligent wound dressings, providing innovative strategies for chronic wound repair and monitoring. Notably, CHs excel in promoting cell migration and proliferation, exhibit powerful antibacterial and anti-inflammatory properties, and enhance collagen deposition and angiogenesis. These capabilities, combined with real-time monitoring functions, play a pivotal role in accelerating collagen synthesis, angiogenesis and continuous wound surveillance. This review delves into the preparation, mechanisms and applications of CHs in wound management, highlighting their diverse and significant advantages. It emphasizes the effectiveness of CHs in treating various chronic wounds, such as diabetic ulcers, infected wounds, temperature-related injuries and athletic joint wounds. Additionally, it explores the diverse applications of multifunctional intelligent CHs in advanced wound care technologies, encompassing self-powered dressings, electrically-triggered drug delivery, comprehensive diagnostics and therapeutics and scar-free healing. Furthermore, the review highlights the challenges to their broader implementation, explores the future of intelligent wound dressings and discusses the transformative role of CHs in chronic wound management, particularly in the context of the anticipated integration of artificial intelligence (AI). Additionally, this review underscores the challenges hindering the widespread adoption of CHs, delves into the prospects of intelligent wound dressings and elucidates the transformative impact of CHs in managing chronic wounds, especially with the forthcoming integration of AI. This integration promises to facilitate predictive analytics and tailor personalized treatment plans, thereby further refining the healing process and elevating patient satisfaction. Addressing these challenges and harnessing emerging technologies, we postulate, will establish CHs as a cornerstone in revolutionizing chronic wound care, significantly improving patient outcomes.
Collapse
Affiliation(s)
- Ying Fang
- Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Yiran Han
- Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Lu Yang
- Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Shibin Wang
- Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Chaoping Fu
- Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| |
Collapse
|
2
|
Cao J, Wu B, Yuan P, Liu Y, Hu C. Rational Design of Multifunctional Hydrogels for Wound Repair. J Funct Biomater 2023; 14:553. [PMID: 37998122 PMCID: PMC10672203 DOI: 10.3390/jfb14110553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
The intricate microenvironment at the wound site, coupled with the multi-phase nature of the healing process, pose significant challenges to the development of wound repair treatments. In recent years, applying the distinctive benefits of hydrogels to the development of wound repair strategies has yielded some promising results. Multifunctional hydrogels, by meeting the different requirements of wound healing stages, have greatly improved the healing effectiveness of chronic wounds, offering immense potential in wound repair applications. This review summarized the recent research and applications of multifunctional hydrogels in wound repair. The focus was placed on the research progress of diverse multifunctional hydrogels, and their mechanisms of action at different stages of wound repair were discussed in detail. Through a comprehensive analysis, we found that multifunctional hydrogels play an indispensable role in the process of wound repair by providing a moist environment, controlling inflammation, promoting angiogenesis, and effectively preventing infection. However, further implementation of multifunctional hydrogel-based therapeutic strategies also faces various challenges, such as the contradiction between the complexity of multifunctionality and the simplicity required for clinical translation and application. In the future, we should work to address these challenges, further optimize the design and preparation of multifunctional hydrogels, enhance their effectiveness in wound repair, and promote their widespread application in clinical practice.
Collapse
Affiliation(s)
- Juan Cao
- School of Fashion and Design Art, Sichuan Normal University, Chengdu 610066, China;
| | - Bo Wu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; (B.W.); (Y.L.)
| | - Ping Yuan
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China;
| | - Yeqi Liu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; (B.W.); (Y.L.)
| | - Cheng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Alvarez-Lorenzo C, Zarur M, Seijo-Rabina A, Blanco-Fernandez B, Rodríguez-Moldes I, Concheiro A. Physical stimuli-emitting scaffolds: The role of piezoelectricity in tissue regeneration. Mater Today Bio 2023; 22:100740. [PMID: 37521523 PMCID: PMC10374602 DOI: 10.1016/j.mtbio.2023.100740] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/01/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023] Open
Abstract
The imbalance between life expectancy and quality of life is increasing due to the raising prevalence of chronic diseases. Musculoskeletal disorders and chronic wounds affect a growing percentage of people and demand more efficient tools for regenerative medicine. Scaffolds that can better mimic the natural physical stimuli that tissues receive under healthy conditions and during healing may significantly aid the regeneration process. Shape, mechanical properties, pore size and interconnectivity have already been demonstrated to be relevant scaffold features that can determine cell adhesion and differentiation. Much less attention has been paid to scaffolds that can deliver more dynamic physical stimuli, such as electrical signals. Recent developments in the precise measurement of electrical fields in vivo have revealed their key role in cell movement (galvanotaxis), growth, activation of secondary cascades, and differentiation to different lineages in a variety of tissues, not just neural. Piezoelectric scaffolds can mimic the natural bioelectric potentials and gradients in an autonomous way by generating the electric stimuli themselves when subjected to mechanical loads or, if the patient or the tissue lacks mobility, ultrasound irradiation. This review provides an analysis on endogenous bioelectrical signals, recent developments on piezoelectric scaffolds for bone, cartilage, tendon and nerve regeneration, and their main outcomes in vivo. Wound healing with piezoelectric dressings is addressed in the last section with relevant examples of performance in animal models. Results evidence that a fine adjustment of material composition and processing (electrospinning, corona poling, 3D printing, annealing) provides scaffolds that act as true emitters of electrical stimuli that activate endogenous signaling pathways for more efficient and long-term tissue repair.
Collapse
Affiliation(s)
- Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Mariana Zarur
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Alejandro Seijo-Rabina
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Barbara Blanco-Fernandez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Isabel Rodríguez-Moldes
- Grupo NEURODEVO, Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
4
|
Yu R, Zhang H, Guo B. Conductive Biomaterials as Bioactive Wound Dressing for Wound Healing and Skin Tissue Engineering. NANO-MICRO LETTERS 2021; 14:1. [PMID: 34859323 PMCID: PMC8639891 DOI: 10.1007/s40820-021-00751-y] [Citation(s) in RCA: 315] [Impact Index Per Article: 78.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/29/2021] [Indexed: 05/06/2023]
Abstract
Conductive biomaterials based on conductive polymers, carbon nanomaterials, or conductive inorganic nanomaterials demonstrate great potential in wound healing and skin tissue engineering, owing to the similar conductivity to human skin, good antioxidant and antibacterial activities, electrically controlled drug delivery, and photothermal effect. However, a review highlights the design and application of conductive biomaterials for wound healing and skin tissue engineering is lacking. In this review, the design and fabrication methods of conductive biomaterials with various structural forms including film, nanofiber, membrane, hydrogel, sponge, foam, and acellular dermal matrix for applications in wound healing and skin tissue engineering and the corresponding mechanism in promoting the healing process were summarized. The approaches that conductive biomaterials realize their great value in healing wounds via three main strategies (electrotherapy, wound dressing, and wound assessment) were reviewed. The application of conductive biomaterials as wound dressing when facing different wounds including acute wound and chronic wound (infected wound and diabetic wound) and for wound monitoring is discussed in detail. The challenges and perspectives in designing and developing multifunctional conductive biomaterials are proposed as well.
Collapse
Affiliation(s)
- Rui Yu
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Hualei Zhang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
5
|
Khona DK, Roy S, Ghatak S, Huang K, Jagdale G, Baker LA, Sen CK. Ketoconazole resistant Candida albicans is sensitive to a wireless electroceutical wound care dressing. Bioelectrochemistry 2021; 142:107921. [PMID: 34419917 PMCID: PMC8788813 DOI: 10.1016/j.bioelechem.2021.107921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/27/2021] [Accepted: 07/31/2021] [Indexed: 01/22/2023]
Abstract
Wireless electroceutical dressing (WED) fabric kills bacteria and disrupts bacterial biofilm. This work tested, comparing with standard of care topical antibiotic ketoconazole, whether the weak electric field generated by WED is effective to manage infection caused by ketoconazole-resistant yeast Candida albicans. WED inhibited Candida albicans biofilm formation and planktonic growth. Unlike ketoconazole, WED inhibited yeast to hyphal transition and downregulated EAP1 curbing cell attachment. In response to WED-dependent down-regulation of biofilm-forming BRG1 and ROB1, BCR1 expression was markedly induced in what seems to be a futile compensatory response. WED induced NRG1 and TUP1, negative regulators of filamentation; it down-regulated EFG1, a positive regulator of hyphal pathway. Consistent with the anti-hyphal properties of WED, the expression of ALS3 and HWP1 were diminished. Ketoconazole failed to reproduce the effects of WED on NRG1, TUP1 and EFG1. WED blunted efflux pump activity; this effect was in direct contrast to that of ketoconazole. WED exposure compromised cellular metabolism. In the presence of ketoconazole, the effect was synergistic. Unlike ketoconazole, WED caused membrane depolarization, changes in cell wall composition and loss of membrane integrity. This work presents first evidence that weak electric field is useful in managing pathogens which are otherwise known to be antibiotic resistant.
Collapse
Affiliation(s)
- Dolly K Khona
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Sashwati Roy
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Subhadip Ghatak
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Kaixiang Huang
- Department of Chemistry, Indiana University, Bloomington, IN 47405, United States
| | - Gargi Jagdale
- Department of Chemistry, Indiana University, Bloomington, IN 47405, United States
| | - Lane A Baker
- Department of Chemistry, Indiana University, Bloomington, IN 47405, United States
| | - Chandan K Sen
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| |
Collapse
|
6
|
Electroceutical fabric lowers zeta potential and eradicates coronavirus infectivity upon contact. Sci Rep 2021; 11:21723. [PMID: 34741051 PMCID: PMC8571396 DOI: 10.1038/s41598-021-00910-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus with intact infectivity attached to PPE surfaces pose significant threat to the spread of COVID-19. We tested the hypothesis that an electroceutical fabric, generating weak potential difference of 0.5 V, disrupts the infectivity of coronavirus upon contact by destabilizing the electrokinetic properties of the virion. Porcine respiratory coronavirus AR310 particles (105) were placed in direct contact with the fabric for 1 or 5 min. Following one minute of contact, zeta potential of the porcine coronavirus was significantly lowered indicating destabilization of its electrokinetic properties. Size-distribution plot showed appearance of aggregation of the virus. Testing of the cytopathic effects of the virus showed eradication of infectivity as quantitatively assessed by PI-calcein and MTT cell viability tests. This work provides the rationale to consider the studied electroceutical fabric, or other materials with comparable property, as material of choice for the development of PPE in the fight against COVID-19.
Collapse
|
7
|
Korupalli C, Li H, Nguyen N, Mi F, Chang Y, Lin Y, Sung H. Conductive Materials for Healing Wounds: Their Incorporation in Electroactive Wound Dressings, Characterization, and Perspectives. Adv Healthc Mater 2021; 10:e2001384. [PMID: 33274846 DOI: 10.1002/adhm.202001384] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/06/2020] [Indexed: 12/11/2022]
Abstract
The use of conductive materials to promote the activity of electrically responsive cells is an effective means of accelerating wound healing. This article focuses on recent advancements in conductive materials, with emphasis on overviewing their incorporation with non-conducting polymers to fabricate electroactive wound dressings. The characteristics of these electroactive dressings are deliberated, and the mechanisms on how they accelerate the wound healing process are discussed. Potential directions for the future development of electroactive wound dressings and their potential in monitoring the course of wound healing in vivo concomitantly are also proposed.
Collapse
Affiliation(s)
- Chiranjeevi Korupalli
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu Taiwan 300 ROC
| | - Hui Li
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu Taiwan 300 ROC
| | - Nhien Nguyen
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu Taiwan 300 ROC
| | - Fwu‐Long Mi
- Department of Biochemistry and Molecular Cell Biology School of Medicine College of Medicine Taipei Medical University Taipei Taiwan 110 ROC
| | - Yen Chang
- Taipei Tzu Chi Hospital Buddhist Tzu Chi Medical Foundation and School of Medicine Tzu Chi University Hualien Taiwan 970 ROC
| | - Yu‐Jung Lin
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu Taiwan 300 ROC
- Research Center for Applied Sciences Academia Sinica Taipei Taiwan 11529 ROC
| | - Hsing‐Wen Sung
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu Taiwan 300 ROC
| |
Collapse
|
8
|
Maijer A, Gessner A, Trumpatori B, Varhus JD. Bioelectric Dressing Supports Complex Wound Healing in Small Animal Patients. Top Companion Anim Med 2018; 33:21-28. [DOI: 10.1053/j.tcam.2018.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 01/27/2023]
|
9
|
Berthelot R, Neethirajan S. Nanoscale imaging approaches to quantifying the electrical properties of pathogenic bacteria. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa91f8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|