1
|
Fitzpatrick DP, Browne E, Kealey C, Brady D, Kavanagh S, Devery S, Gately N. The Effects of Encapsulating Bioactive Irish Honey into Pluronic-Based Thermoresponsive Hydrogels and Potential Application in Soft Tissue Regeneration. Gels 2025; 11:215. [PMID: 40136920 PMCID: PMC11941932 DOI: 10.3390/gels11030215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
Honey has been recognised for centuries for its potential therapeutic properties, and its application in wound healing has gained attention due to its antimicrobial, anti-inflammatory, and regenerative properties. With the rapid increase in multidrug resistance, there is a need for new or alternative approaches to traditional antibiotics. This paper focuses on the physicochemical changes that occur when formulating honey into Pluronic F127 hydrogels. The manual incorporation of honey, irrespective of quality type, presented the amelioration of Pluronic's capacity to undergo sol-gel transitions, as investigated by parallel plate rheology. This novel finding was attributed to the formation of fractal aggregates via the hydrogen-bonding-induced irreversible aggregation of honey-PF127 micelles, which subsequently dominate the entire hydrogel system to form a gel. The hydrogen bonding of micelles was identified through Attenuated Total Reflectance Fourier-Transform Infrared Spectroscopy (ATR-FTIR), Differential Scanning Calorimetry (DSC), and Dynamic Light Scattering (DLS). This is the first known study to provide physicochemical insight into the effects that honey incorporation has on the thermogelation capacity of Pluronic F127 hydrogels for downstream dermal wound applications.
Collapse
Affiliation(s)
- Daniel P. Fitzpatrick
- PRISM Institute, Technological University of the Shannon, N37HD68 Athlone, Co. Westmeath, Ireland
- Bioscience Research Institute, Technological University of the Shannon, N37HD68 Athlone, Co. Westmeath, Ireland; (E.B.)
- Department of Pharmaceutical Sciences and Biotechnology, Technological University of the Shannon, N37HD68 Athlone, Co. Westmeath, Ireland
- Applied Polymer Technologies (APT), Technological University of the Shannon, N37HD6 Athlone, Co. Westmeath, Ireland
| | - Emma Browne
- Bioscience Research Institute, Technological University of the Shannon, N37HD68 Athlone, Co. Westmeath, Ireland; (E.B.)
- Department of Pharmaceutical Sciences and Biotechnology, Technological University of the Shannon, N37HD68 Athlone, Co. Westmeath, Ireland
| | - Carmel Kealey
- Bioscience Research Institute, Technological University of the Shannon, N37HD68 Athlone, Co. Westmeath, Ireland; (E.B.)
- Department of Pharmaceutical Sciences and Biotechnology, Technological University of the Shannon, N37HD68 Athlone, Co. Westmeath, Ireland
| | - Damien Brady
- Bioscience Research Institute, Technological University of the Shannon, N37HD68 Athlone, Co. Westmeath, Ireland; (E.B.)
- Department of Science and Health, South East Technological University, R93V960 Carlow, Co. Carlow, Ireland
| | - Siobhan Kavanagh
- Department of Pharmaceutical Sciences and Biotechnology, Technological University of the Shannon, N37HD68 Athlone, Co. Westmeath, Ireland
| | - Sinead Devery
- Department of Pharmaceutical Sciences and Biotechnology, Technological University of the Shannon, N37HD68 Athlone, Co. Westmeath, Ireland
| | - Noel Gately
- PRISM Institute, Technological University of the Shannon, N37HD68 Athlone, Co. Westmeath, Ireland
- Applied Polymer Technologies (APT), Technological University of the Shannon, N37HD6 Athlone, Co. Westmeath, Ireland
| |
Collapse
|
2
|
Elbanna SA, Ebada HMK, Abdallah OY, Essawy MM, Abdelhamid HM, Barakat HS. Novel tetrahydrocurcumin integrated mucoadhesive nanocomposite κ-carrageenan/xanthan gum sponges: a strategy for effective local treatment of oral cancerous and precancerous lesions. Drug Deliv 2023; 30:2254530. [PMID: 37668361 PMCID: PMC10481765 DOI: 10.1080/10717544.2023.2254530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/27/2023] [Accepted: 08/26/2023] [Indexed: 09/06/2023] Open
Abstract
Oral cancer is one of the leading causes of death worldwide. Oral precancerous lesions (OPL) are the precursors of oral cancer, with varying degrees of progression. Tetrahydrocurcumin (THC) is a major metabolite of curcumin with superior anticancer properties against various types of cancer. However, THC's clinical outcome is limited by its poor aqueous solubility. Herein, we developed novel mucoadhesive biopolymer-based composite sponges for buccal delivery of THC, exploiting nanotechnology and mucoadhesion for efficient prevention and treatment of oral cancer. Firstly, THC-nanocrystals (THC-NC) were formulated and characterized for subsequent loading into mucoadhesive composite sponges. The anticancer activity of THC-NC was assessed on a human tongue squamous carcinoma cell line (SCC-4). Finally, the chemopreventive activity of THC-NC loaded sponges (THC-NC-S) was examined in DMBA-induced hamster OPL. The selected THC-NC exhibited a particle size of 532.68 ± 13.20 nm and a zeta potential of -46.08 ± 1.12 mV. Moreover, THC-NC enhanced the anticancer effect against SCC-4 with an IC50 value of 80 µg/mL. THC-NC-S exhibited good mucoadhesion properties (0.24 ± 0.02 N) with sustained drug release, where 90% of THC was released over 4 days. Furthermore, THC-NC-S had a magnificent potential for maintaining high chemopreventive activity, as demonstrated by significant regression in the dysplasia degree and a decline in cyclin D1 (control: 40.4 ± 12.5, THC-NC-S: 12.07 ± 5.2), culminating in significant amelioration after 25 days of treatment. Conclusively, novel THC-NC-S represent a promising platform for local therapy of OPL, preventing their malignant transformation into cancer.
Collapse
Affiliation(s)
- Shimaa A. Elbanna
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Heba M. K. Ebada
- Central Lab, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Ossama Y. Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Marwa M. Essawy
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Hend M. Abdelhamid
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Hebatallah S. Barakat
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Zahra D, Shokat Z, Ahmad A, Javaid A, Khurshid M, Ashfaq UA, Nashwan AJ. Exploring the recent developments of alginate silk fibroin material for hydrogel wound dressing: A review. Int J Biol Macromol 2023; 248:125989. [PMID: 37499726 DOI: 10.1016/j.ijbiomac.2023.125989] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Hydrogels, a type of polymeric material capable of retaining water within a three-dimensional network, have demonstrated their potential in wound healing, surpassing traditional wound dressings. These hydrogels possess remarkable mechanical, chemical, and biological properties, making them suitable scaffolds for tissue regeneration. This article aims to emphasize the advantages of alginate, silk fibroin, and hydrogel-based wound dressings, specifically highlighting their crucial functions that accelerate the healing process of skin wounds. Noteworthy functions include self-healing ability, water solubility, anti-inflammatory properties, adhesion, antimicrobial properties, drug delivery, conductivity, and responsiveness to stimuli. Moreover, recent advancements in hydrogel technology have resulted in the development of wound dressings with enhanced features for monitoring wound progression, further augmenting their effectiveness. This review emphasizes the utilization of hydrogel membranes for treating excisional and incisional wounds, while exploring recent breakthroughs in hydrogel wound dressings, including nanoparticle composite hydrogels, stem cell hydrogel composites, and curcumin-hydrogel composites. Additionally, the review focuses on diverse synthesis procedures, designs, and potential applications of hydrogels in wound healing dressings.
Collapse
Affiliation(s)
- Duaa Zahra
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Pakistan
| | - Zeeshan Shokat
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Pakistan
| | - Azka Ahmad
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Pakistan
| | - Anam Javaid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Pakistan
| | - Mohsin Khurshid
- Institute of Microbiology, Government College University Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Pakistan.
| | | |
Collapse
|
4
|
Chatuphonprasert W, Tatiya-aphiradee N, Sutthanut K, Thammawat S, Puthongking P, Nopwinyoowong N, Jarukamjorn K. Combinatory effects of Dipterocarpus alatus twig emulgel: Wound-restoring, antibacterial, and anti-inflammatory activities against methicillin-resistant Staphylococcus aureus-infected mouse superficial wounds. Heliyon 2023; 9:e17483. [PMID: 37416687 PMCID: PMC10320117 DOI: 10.1016/j.heliyon.2023.e17483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/22/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023] Open
Abstract
Dipterocarpus alatus has been used for the treatment of infectious skin diseases and ulcerative wounds in Thai traditional medicine. A major pathogen in human superficial skin infections is methicillin-resistant Staphylococcus aureus (MRSA). This study determined the wound healing, antibacterial, and anti-inflammatory activities of D. alatus twig emulgel against MRSA-infected mouse superficial skin wounds. Ethyl acetate-methanol crude extract of D. alatus twig was incorporated into emulgel at concentrations of 20 and 40 mg/g (D20 and D40) and its activity was compared to tetracycline emulgel (160 μg/g, Tetra). MRSA-infected superficial wounds demonstrated decreased skin barrier strength, increased transepidermal water loss (TEWL), and mast cell accumulation. Expression of toll-like receptor 2 (TLR-2), NF-κβ, TNFα, IL-1β, IL-6 and IL-10 genes were induced after MRSA infection. Daily application of 100 μL of D20 or D40 for 9 days restored skin barrier strength and TEWL while reducing mast cell and MRSA numbers compared to the non-treated group (MRSA-NT). The wounds treated with D20 and D40 were entirely healed on day 9. Expression of TLR-2 and cytokine-related genes NF-κβ, TNFα, IL-1β, IL-6 and IL-10 were normalized by treatment with either D20 or D40. Therefore, emulgel containing 20 to 40 mg/g ethyl acetate-methanol crude D. alatus twig extract is a good candidate for development as a topical formulation for MRSA-infected ulcerated wounds.
Collapse
Affiliation(s)
- Waranya Chatuphonprasert
- Division of Pre-clinic, Faculty of Medicine, Mahasarakham University, Maha Sarakham, 44000, Thailand
- Research Group for Pharmaceutical Activities of Natural Products Using Pharmaceutical Biotechnology (PANPB), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nitima Tatiya-aphiradee
- Research Group for Pharmaceutical Activities of Natural Products Using Pharmaceutical Biotechnology (PANPB), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Khaetthareeya Sutthanut
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002 Thailand
| | - Sutthiwan Thammawat
- Division of Pre-clinic, Faculty of Medicine, Mahasarakham University, Maha Sarakham, 44000, Thailand
| | - Ploenthip Puthongking
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002 Thailand
| | - Naroeporn Nopwinyoowong
- Research Group for Pharmaceutical Activities of Natural Products Using Pharmaceutical Biotechnology (PANPB), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kanokwan Jarukamjorn
- Research Group for Pharmaceutical Activities of Natural Products Using Pharmaceutical Biotechnology (PANPB), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002 Thailand
| |
Collapse
|
5
|
Curcumin-loaded alginate hydrogels for cancer therapy and wound healing applications: A review. Int J Biol Macromol 2023; 232:123283. [PMID: 36657541 DOI: 10.1016/j.ijbiomac.2023.123283] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Hydrogels have emerged as a versatile platform for a numerous biomedical application due to their ability to absorb a huge quantity of biofluids. In order to design hydrogels, natural polymers are an attractive option owing to their biocompatibility and biodegradability. Due to abundance in occurrence, cost effectiveness, and facile crosslinking approaches, alginate has been extensively investigated to fabricate hydrogel matrix. Management of cancer and chronic wounds have always been a challenge for pharmaceutical and healthcare sector. In both cases, curcumin have been shown significant improvement and effectiveness. However, the innate restraints like poor bioavailability, hydrophobicity, and rapid systemic clearance associated with curcumin have restricted its clinical translations. The current review explores the cascade of research around curcumin encapsulated alginate hydrogel matrix for wound healing and cancer therapy. The focus of the review is to emphasize the mechanistic effects of curcumin with its fate inside the cells. Further, the review discusses different approaches to designed curcumin loaded alginate hydrogels along with the parameters that regulates their release behavior. Finally, the review is concluded with emphasize on some key aspect on increasing the efficacy of these hydrogels along with novel strategies to further develop curcumin loaded alginate hydrogel matrix with multifacet applications.
Collapse
|
6
|
Madamsetty V, Vazifehdoost M, Alhashemi SH, Davoudi H, Zarrabi A, Dehshahri A, Fekri HS, Mohammadinejad R, Thakur VK. Next-Generation Hydrogels as Biomaterials for Biomedical Applications: Exploring the Role of Curcumin. ACS OMEGA 2023; 8:8960-8976. [PMID: 36936324 PMCID: PMC10018697 DOI: 10.1021/acsomega.2c07062] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Since the first report on the pharmacological activity of curcumin in 1949, enormous amounts of research have reported diverse activities for this natural polyphenol found in the dietary spice turmeric. However, curcumin has not yet been used for human application as an approved drug. The clinical translation of curcumin has been hampered due to its low solubility and bioavailability. The improvement in bioavailability and solubility of curcumin can be achieved by its formulation using drug delivery systems. Hydrogels with their biocompatibility and low toxicity effects have shown a substantial impact on the successful formulation of hydrophobic drugs for human clinical trials. This review focuses on hydrogel-based delivery systems for curcumin and describes its applications as anti-cancer as well as wound healing agents.
Collapse
Affiliation(s)
- Vijay
Sagar Madamsetty
- Department
of Biochemistry and Molecular Biology, Mayo
Clinic College of Medicine and Science, Jacksonville, Florida 32224, United States
| | - Maryam Vazifehdoost
- Department
of Toxicology & Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman 6718773654, Iran
| | - Samira Hossaini Alhashemi
- Pharmaceutical
Sciences Research Center, Shiraz University
of Medical Sciences, Shiraz 7146864685, Iran
| | - Hesam Davoudi
- Department
of Biology, Faculty of Sciences, University
of Zanjan, Zanjan 4537138111, Iran
| | - Ali Zarrabi
- Department
of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey
| | - Ali Dehshahri
- Department
of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Hojjat Samareh Fekri
- Student Research
Committee, Kerman University of Medical
Sciences, Kerman 7619813159, Iran
| | - Reza Mohammadinejad
- Research
Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7619813159, Iran
| | - Vijay Kumar Thakur
- Biorefining
and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, U.K.
- School
of Engineering, University of Petroleum
& Energy Studies (UPES), Dehradun, Uttarakhand 248007, India
| |
Collapse
|
7
|
Singh SK, Dwivedi SD, Yadav K, Shah K, Chauhan NS, Pradhan M, Singh MR, Singh D. Novel Biotherapeutics Targeting Biomolecular and Cellular Approaches in Diabetic Wound Healing. Biomedicines 2023; 11:biomedicines11020613. [PMID: 36831151 PMCID: PMC9952895 DOI: 10.3390/biomedicines11020613] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Wound healing responses play a major role in chronic inflammation, which affects millions of people around the world. One of the daunting tasks of creating a wound-healing drug is finding equilibrium in the inflammatory cascade. In this study, the molecular and cellular mechanisms to regulate wound healing are explained, and recent research is addressed that demonstrates the molecular and cellular events during diabetic wound healing. Moreover, a range of factors or agents that facilitate wound healing have also been investigated as possible targets for successful treatment. It also summarises the various advances in research findings that have revealed promising molecular targets in the fields of therapy and diagnosis of cellular physiology and pathology of wound healing, such as neuropeptides, substance P, T cell immune response cDNA 7, miRNA, and treprostinil growth factors such as fibroblast growth factor, including thymosin beta 4, and immunomodulators as major therapeutic targets.
Collapse
Affiliation(s)
- Suraj Kumar Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Shradha Devi Dwivedi
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Krishna Yadav
- Raipur Institute of Pharmaceutical Educations and Research, Sarona, Raipur 492010, Chhattisgarh, India
| | - Kamal Shah
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, Uttar Pradesh, India
| | | | - Madhulika Pradhan
- Gracious College of Pharmacy Abhanpur Raipur, Village-Belbhata, Taluka, Abhanpur 493661, Chhattisgarh, India
| | - Manju Rawat Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
- Correspondence:
| |
Collapse
|
8
|
Rayate AS, Nagoba BS, Mumbre SS, Mavani HB, Gavkare AM, Deshpande AS. Current scenario of traditional medicines in management of diabetic foot ulcers: A review. World J Diabetes 2023; 14:1-16. [PMID: 36684382 PMCID: PMC9850800 DOI: 10.4239/wjd.v14.i1.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/04/2022] [Accepted: 12/05/2022] [Indexed: 01/10/2023] Open
Abstract
Diabetic foot infections and diabetic foot ulcers (DFU) cause significant suffering and are often recurring. DFU have three important pathogenic factors, namely, microangiopathy causing local tissue anoxia, neuropathy making the foot prone to injuries from trivial trauma, and local tissue hyperglycaemia favouring infection and delaying the wound healing. DFU have been the leading cause for non-traumatic amputations of part or whole of the limb. Western medicines focus mainly on euglycaemia, antimicrobials, debridement and wound cover with grafts, and off-loading techniques. Advances in euglycaemic control, foot care and footwear, systemic antimicrobial therapy, and overall health care access and delivery, have resulted in an overall decrease in amputations. However, the process of wound care after adequate debridement remains a major cost burden globally, especially in developing nations. This process revolves around two basic concerns regarding control/eradication of local infection and promotion of faster healing in a chronic DFU without recurrence. Wound modulation with various dressings and techniques are often a costly affair. Some aspects of the topical therapy with modern/Western medicines are frequently not addressed. Cost of and compliance to these therapies are important as both the wounds and their treatment are "chronic." Naturally occurring agents/medications from traditional medicine systems have been used frequently in different cultures and nations, though without adequate clinical base/relevance. Traditional Chinese medicine involves restoring yin-yang balance, regulating the 'chi', and promoting local blood circulation. Traditional medicines from India have been emphasizing on 'naturally' available products to control wound infection and promote all the aspects of wound healing. There is one more group of chemicals which are not pharmaceutical agents but can create acidic milieu in the wound to satisfy the above-mentioned basic concerns. Various natural and plant derived products (e.g., honey, aloe vera, oils, and calendula) and maggots are also used for wound healing purposes. We believe that patients with a chronic wound are so tired physically, emotionally, and financially that they usually accept native traditional medicine which has the same cultural base, belief, and faith. Many of these products have never been tested in accordance to "evidence-based medicine." There are usually case reports and experience-based reports about these products. Recently, there have been some trials (in vitro and in vivo) to verify the claims of usage of traditional medicines in management of DFU. Such studies show that these natural products enhance the healing process by controlling infection, stimulating granulation tissue, antimicrobial action, promoting fibroblastic activity and collagen deposition, etc. In this review, we attempt to study and analyse the available literature on results of topical traditional medicines, which are usually advocated in the management of DFU. An integrated and 'holistic' approach of both modern and traditional medicine may be more acceptable to the patient, cost effective, and easy to administer and monitor. This may also nevertheless lead to further improvement in quality of life and decrease in the rates of amputations for DFU.
Collapse
Affiliation(s)
- Abhijit S Rayate
- Department of Surgery, Maharashtra Institute of Medical Sciences & Research (Medical College), Latur 413531, India
| | - Basavraj S Nagoba
- Department of Microbiology, Maharashtra Institute of Medical Sciences & Research (Medical College), Latur 413531, India
| | - Sachin S Mumbre
- Department of Community Medicine, Ashwini Rural Medical College, Solapur 413006, India
| | - Hardi B Mavani
- Department of Surgery, Maharashtra Institute of Medical Sciences & Research (Medical College), Latur 413531, India
| | - Ajay M Gavkare
- Department of Physiology, Maharashtra Institute of Medical Sciences & Research (Medical College), Latur 413531, India
| | - Advait S Deshpande
- Department of Surgery, Maharashtra Institute of Medical Sciences & Research (Medical College), Latur 413531, India
| |
Collapse
|
9
|
Vaezi H, Rabbani S, Mortazavi SA, Kamalinejad M, Haeri A. Fabrication, in Vitro, and in Vivo Characterization of Mucoadhesive Berberine-Loaded Blended Wafers for Treatment of Chemotherapy-Induced Oral Mucositis. AAPS PharmSciTech 2022; 24:19. [DOI: 10.1208/s12249-022-02476-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
|
10
|
Dissolvable wound dressing loaded with silver nanoparticles together with ampicillin and ciprofloxacin. Ther Deliv 2022; 13:295-311. [PMID: 35924677 DOI: 10.4155/tde-2021-0087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aim: The current study is focused on the development of water-soluble wound dressings, which are potential dressings for the treatment of burn wounds. Materials & methods: Sodium alginate-based dissolvable wound dressings were prepared and loaded with silver nanoparticles and various antibiotics (ampicillin and ciprofloxacin) followed by characterization and in vitro antibacterial studies. Results & conclusions: The prepared sodium alginate-based dissolvable wound dressing exhibited good porosity, water uptake and moisture content, promising antibacterial activity, high absorption capacity of simulated wound exudates, excellent water vapor transmission rate in the range of 2000 to 5000 g/m2 day-1, sustained drug-release profiles and water solubility. The wound dressings were active against Proteus mirabilis, Staphylococcus aureus, Proteus vulgaris, Escherichia coli and Klebsiella aeruginosa strains of bacteria. The results obtained revealed the wound dressing as potential wound dressings for burn wounds and sensitive skin.
Collapse
|
11
|
Polymer-Based Wound Dressing Materials Loaded with Bioactive Agents: Potential Materials for the Treatment of Diabetic Wounds. Polymers (Basel) 2022; 14:polym14040724. [PMID: 35215637 PMCID: PMC8874614 DOI: 10.3390/polym14040724] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetic wounds are severe injuries that are common in patients that suffer from diabetes. Most of the presently employed wound dressing scaffolds are inappropriate for treating diabetic wounds. Improper treatment of diabetic wounds usually results in amputations. The shortcomings that are related to the currently used wound dressings include poor antimicrobial properties, inability to provide moisture, weak mechanical features, poor biodegradability, and biocompatibility, etc. To overcome the poor mechanical properties, polymer-based wound dressings have been designed from the combination of biopolymers (natural polymers) (e.g., chitosan, alginate, cellulose, chitin, gelatin, etc.) and synthetic polymers (e.g., poly (vinyl alcohol), poly (lactic-co-glycolic acid), polylactide, poly-glycolic acid, polyurethanes, etc.) to produce effective hybrid scaffolds for wound management. The loading of bioactive agents or drugs into polymer-based wound dressings can result in improved therapeutic outcomes such as good antibacterial or antioxidant activity when used in the treatment of diabetic wounds. Based on the outstanding performance of polymer-based wound dressings on diabetic wounds in the pre-clinical experiments, the in vivo and in vitro therapeutic results of the wound dressing materials on the diabetic wound are hereby reviewed.
Collapse
|
12
|
Chopra H, Bibi S, Kumar S, Khan MS, Kumar P, Singh I. Preparation and Evaluation of Chitosan/PVA Based Hydrogel Films Loaded with Honey for Wound Healing Application. Gels 2022; 8:gels8020111. [PMID: 35200493 PMCID: PMC8871709 DOI: 10.3390/gels8020111] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 11/16/2022] Open
Abstract
In the present study, chitosan/polyvinyl alcohol (PVA)-based honey hydrogel films were developed for potential wound healing application. The hydrogel films were developed by a solvent-casting method and were evaluated in terms of thickness, weight variation, folding endurance, moisture content and moisture uptake. The water vapor transmission rate was found to range between 1650.50 ± 35.86 and 2698.65 ± 76.29 g/m2/day. The tensile strength and elongation at break were found to range between 4.74 ± 0.83 and 38.36 ± 5.39 N, and 30.58 ± 3.64 and 33.51 ± 2.47 mm, respectively, indicating significant mechanical properties of the films. SEM images indicated smooth surface morphology of the films. FTIR, DSC and in silico analysis were performed, which highlighted the docking energies of the protein–ligand complex and binding interactions such as hydrogen bonding, Pi–Pi bonding, and Pi–H bonding between the selected compounds and target proteins; hence, we concluded, with the three best molecules (lumichrome, galagin and chitosan), that there was wound healing potential. In vitro studies pointed toward a sustained release of honey from the films. The antimicrobial performance of the films was investigated against Staphylococcus aureus. Overall, the results signaled the potential application of chitosan/PVA based hydrogel films as wound dressings. Furthermore, in vivo experiments may be required to evaluate the clinical efficacy of honey-loaded chitosan/PVA hydrogel films in wound healing.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India;
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China;
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 650091, China
| | - Sandeep Kumar
- College of Pharmacy, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College, Ropar 140111, Punjab, India;
| | - Muhammad Saad Khan
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad, Sahiwal 57000, Pakistan;
| | - Pradeep Kumar
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Correspondence: (P.K.); (I.S.)
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India;
- Correspondence: (P.K.); (I.S.)
| |
Collapse
|
13
|
Nezhad-Mokhtari P, Javanbakht S, Asadi N, Ghorbani M, Milani M, Hanifehpour Y, Gholizadeh P, Akbarzadeh A. Recent advances in honey-based hydrogels for wound healing applications: Towards natural therapeutics. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102789] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
14
|
Sağıroğlu AA, Çelik B, Güler EM, Koçyiğit A, Özer Ö. Evaluation of wound healing potential of new composite liposomal films containing coenzyme Q10 and d-panthenyl triacetate as combinational treatment. Pharm Dev Technol 2021; 26:444-454. [PMID: 33583320 DOI: 10.1080/10837450.2021.1887892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Conventional formulations can not achieve wound healing efficiently and fail to accelerate wound regeneration. To overcome these problems, it was planned to develop nanoformulations that perform a positive effect on the wound healing duration and are suitable for topical use. In this study, liposomal film formulations that encapsulated d-panthenyl triacetate (PTA) and coenzyme Q10 (CoQ10) were optimized by using response surface methodology (RSM) and were analyzed for their wound healing efficacy and cytotoxicity on fibroblast (CCD1079 Sk) and keratinocyte (HEKa) cells. Swelling index, puncture strength, and puncture deformation values, which were choosen as dependent variables for the liposomal film formulation were found as 556.9% ± 21.3, 3.98 ± 0.98 N/mm2, and 6.57% ± 1.12, respectively. Cumulative release of 65.32% for PTA and 12.23% for CoQ10 was obtained after 24 hours of in vitro release study in sink conditions. The in vitro cytotoxicity and wound healing assay results suggested that optimum formulation could be used safely on fibroblast and keratinocyte cells and provided wound closure entirely after 24 h. Consequently, the optimum liposomal film containing PTA and CoQ10 formulations could be proposed as an innovative approach in wound healing treatment, considering their release, mechanical properties, stability, and effectiveness.
Collapse
Affiliation(s)
- Ali Asram Sağıroğlu
- Faculty of Pharmacy, Pharmaceutical Technology Department, Bezmialem Vakif University, Istanbul, Turkey
| | - Burak Çelik
- Faculty of Pharmacy, Pharmaceutical Technology Department, Bezmialem Vakif University, Istanbul, Turkey
| | - Eray Metin Güler
- Hamidiye School of Medicine, Department of Medical Biochemistry, University of Health Sciences, Istanbul, Turkey.,Hamidiye Faculty of Medicine, Haydarpasa Numune Health Application and Research Center, Department of Medical Biochemistry, University of Health Sciences, Istanbul, Turkey
| | - Abdurrahim Koçyiğit
- Faculty of Medicine, Medical Biochemistry Department, Bezmialem Vakif University, Istanbul, Turkey
| | - Özgen Özer
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Ege University, Izmir, Turkey
| |
Collapse
|
15
|
Zeng D, Shen S, Fan D. Molecular design, synthesis strategies and recent advances of hydrogels for wound dressing applications. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Polymer-Based Materials Loaded with Curcumin for Wound Healing Applications. Polymers (Basel) 2020; 12:polym12102286. [PMID: 33036130 PMCID: PMC7600558 DOI: 10.3390/polym12102286] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/03/2020] [Accepted: 09/06/2020] [Indexed: 02/07/2023] Open
Abstract
Some of the currently used wound dressings have interesting features such as excellent porosity, good water-absorbing capacity, moderate water vapor transmission rate, high drug loading efficiency, and good capability to provide a moist environment, but they are limited in terms of antimicrobial properties. Their inability to protect the wound from microbial invasion results in wound exposure to microbial infections, resulting in a delayed wound healing process. Furthermore, some wound dressings are loaded with synthetic antibiotics that can cause adverse side effects on the patients. Natural-based compounds exhibit unique features such as good biocompatibility, reduced toxicity, etc. Curcumin, one such natural-based compound, has demonstrated several biological activities such as anticancer, antibacterial and antioxidant properties. Its good antibacterial and antioxidant activity make it beneficial for the treatment of wounds. Several researchers have developed different types of polymer-based wound dressings which were loaded with curcumin. These wound dressings displayed excellent features such as good biocompatibility, induction of skin regeneration, accelerated wound healing processes and excellent antioxidant and antibacterial activity. This review will be focused on the in vitro and in vivo therapeutic outcomes of wound dressings loaded with curcumin.
Collapse
|
17
|
Pandey A, Momin M, Chando A. Silver sulfadiazine loaded breathable hydrogel sponge for wound healing. Drug Metab Pers Ther 2020; 35:dmpt-2020-0124. [PMID: 32827392 DOI: 10.1515/dmpt-2020-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/22/2020] [Indexed: 11/15/2022]
Abstract
Objectives Patients with serious injury need special care and treatment to control the infection, as wound sepsis is one of the major causes of death. Silver sulfadiazine (SSD) is widely used as an antimicrobial agent which promotes healing and re-epithelialization. However, due to certain drawbacks such as inflammation and cytotoxicity, the need for novel drug delivery modality emerges. The objective of this study was to develop natural polymeric (chitosan and gelatin) hydrogel sponges containing SSD and evaluate its efficacy in wound healing using animal models. Methods SSD containing hydrogel sponges were prepared by solvent casting technique. Scanning electron microscopy (SEM) and Differential scanning calorimetry (DSC) were used to evaluate morphological characteristics of the hydrogel sponges. Anti-thrombogenic property, drug release studies, drug release kinetics, antimicrobial property, and wound healing effect were also studied in detail. Results The optimized batch of hydrogel sponges (CG4) consists of 1% SSD wt., 10% wt. Gelatin, 1% wt. Chitosan and honey 7.5% wt. as plasticizer. At the 12th hour, in vitro and ex vivo drug release was found to be 76.994±0.67% and 24.22±0.57% respectively. CG4 batch had enhanced in vitro antimicrobial activity as compared to conventional marketed cream. The developed SSD hydrogel sponges showed a faster rate of wound healing as compared to a marketed cream. Animals treated with CG4 formulation showed complete angiogenesis and re-epithelialization by 8th day, whereas 12 days were required for complete wound healing with marketed cream. Conclusions The prepared hydrogel sponges can serve as a potential alternative for wound healing dressing as compared to the marketed product.
Collapse
Affiliation(s)
- Anamika Pandey
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati college of Pharmacy, Mumbai, India
| | - Munira Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati college of Pharmacy, Mumbai, India
| | - Anita Chando
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati college of Pharmacy, Mumbai, India
| |
Collapse
|
18
|
Kaplani K, Koutsi S, Armenis V, Skondra FG, Karantzelis N, Champeris Tsaniras S, Taraviras S. Wound healing related agents: Ongoing research and perspectives. Adv Drug Deliv Rev 2018; 129:242-253. [PMID: 29501699 DOI: 10.1016/j.addr.2018.02.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 01/28/2018] [Accepted: 02/26/2018] [Indexed: 02/07/2023]
Abstract
Wound healing response plays a central part in chronic inflammation, affecting millions of people worldwide. It is a dynamic process that can lead to fibrosis, if tissue damage is irreversible and wound resolution is not attained. It is clear that there is a tight interconnection among wound healing, fibrosis and a variety of chronic disease conditions, demonstrating the heterogeneity of this pathology. Based on our further understanding of the cellular and molecular mechanisms underpinning tissue repair, new therapeutic approaches have recently been developed that target different aspects of the wound healing process and fibrosis. Nevertheless, several issues still need to be taken into consideration when designing modern wound healing drug delivery formulations. In this review, we highlight novel pharmacological agents that hold promise for targeting wound repair and fibrosis. We also focus on drug-delivery systems that may enhance current and future therapies.
Collapse
Affiliation(s)
- Konstantina Kaplani
- Division of Stem Cells and Regenerative Medicine, Biomedical Postgraduate Programme, School of Medicine, University of Patras, Patras 26504, Greece; Department of Physiology, School of Medicine, University of Patras, Patras 26504, Greece
| | - Stamatina Koutsi
- Division of Stem Cells and Regenerative Medicine, Biomedical Postgraduate Programme, School of Medicine, University of Patras, Patras 26504, Greece; Department of Physiology, School of Medicine, University of Patras, Patras 26504, Greece
| | - Vasileios Armenis
- Division of Stem Cells and Regenerative Medicine, Biomedical Postgraduate Programme, School of Medicine, University of Patras, Patras 26504, Greece
| | - Foteini G Skondra
- Division of Stem Cells and Regenerative Medicine, Biomedical Postgraduate Programme, School of Medicine, University of Patras, Patras 26504, Greece
| | - Nickolas Karantzelis
- Department of Physiology, School of Medicine, University of Patras, Patras 26504, Greece
| | | | - Stavros Taraviras
- Division of Stem Cells and Regenerative Medicine, Biomedical Postgraduate Programme, School of Medicine, University of Patras, Patras 26504, Greece; Department of Physiology, School of Medicine, University of Patras, Patras 26504, Greece.
| |
Collapse
|
19
|
Liu H, Wang C, Li C, Qin Y, Wang Z, Yang F, Li Z, Wang J. A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Adv 2018; 8:7533-7549. [PMID: 35539132 PMCID: PMC9078458 DOI: 10.1039/c7ra13510f] [Citation(s) in RCA: 524] [Impact Index Per Article: 74.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/12/2018] [Indexed: 12/18/2022] Open
Abstract
Functional active wound dressings are expected to provide a moist wound environment, offer protection from secondary infections, remove wound exudate and accelerate tissue regeneration, as well as to improve the efficiency of wound healing. Chitosan-based hydrogels are considered as ideal materials for enhancing wound healing owing to their biodegradable, biocompatible, non-toxic, antimicrobial, biologically adhesive, biological activity and hemostatic effects. Chitosan-based hydrogels have been demonstrated to promote wound healing at different wound healing stages, and also can alleviate the factors against wound healing (such as excessive inflammatory and chronic wound infection). The unique biological properties of a chitosan-based hydrogel enable it to serve as both a wound dressing and as a drug delivery system (DDS) to deliver antibacterial agents, growth factors, stem cells and so on, which could further accelerate wound healing. For various kinds of wounds, chitosan-based hydrogels are able to promote the effectiveness of wound healing by modifying or combining with other polymers, and carrying different types of active substances. In this review, we will take a close look at the application of chitosan-based hydrogels in wound dressings and DDS to enhance wound healing.
Collapse
Affiliation(s)
- He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Chenyu Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
- Hallym University 1Hallymdaehak-gil Chuncheon Gangwon-do 200-702 Korea
| | - Chen Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Yanguo Qin
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Zhonghan Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Fan Yang
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Zuhao Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Jincheng Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
| |
Collapse
|
20
|
Alibolandi M, Mohammadi M, Taghdisi SM, Abnous K, Ramezani M. Synthesis and preparation of biodegradable hybrid dextran hydrogel incorporated with biodegradable curcumin nanomicelles for full thickness wound healing. Int J Pharm 2017; 532:466-477. [DOI: 10.1016/j.ijpharm.2017.09.042] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/10/2017] [Accepted: 09/16/2017] [Indexed: 10/18/2022]
|
21
|
Affiliation(s)
- R Cooper
- Professor of Microbiology, Centre for Biomedical, Sciences, Cardiff School of Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff
| |
Collapse
|