1
|
Elbakry M, Khatami N, Akoume MY, Julien C, Bouhanik S, Franco A, Caraus I, Elremaly W, Moreau A. Loss of Tyrosine Phosphatase Mu Promotes Scoliosis Progression Through Osteopontin-α5β1 Integrin Signaling and PIPK1γ90 Activity. Int J Mol Sci 2025; 26:1042. [PMID: 39940812 PMCID: PMC11816665 DOI: 10.3390/ijms26031042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/28/2024] [Accepted: 12/28/2024] [Indexed: 02/16/2025] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is characterized by a curvature of the spine affecting approximately 4% of the pediatric population, and the mechanisms driving its progression remain poorly understood. Whole-exome sequencing of a French-Canadian AIS cohort with severe scoliosis identified rare variants in the PTPRM gene, which encodes Protein Tyrosine Phosphatase μ (PTPµ). However, these rare variants alone did not account for the pronounced reduction in PTPµ at both mRNA and protein levels in severe AIS cases. This led us to investigate epigenetic regulators and the identification of five microRNAs (miR-103a-3p, miR-107, miR-148a-3p, miR-148b-3p, and miR-152-3p) that target PTPRM mRNA. These microRNAs were significantly elevated in plasma from severe AIS patients, and miR-148b-3p was also upregulated in AIS osteoblasts. Phenotypic analysis of bipedal Ptrprm knockout (PTPµ -/-) mice showed increased prevalence and severity of scoliosis, while quadrupedal PTPµ -/- mice did not develop scoliosis, underscoring PTPµ's role as a disease-modifying factor. Mechanistically, PTPµ deficiency was found to disrupt Gi-coupled receptor signaling in osteoblasts by enhancing the interaction between osteopontin (OPN) and α5β1 integrin, along with increased tyrosine phosphorylation of phosphatidylinositol-4-phosphate 5-kinase type I (PIPKIγ90). These findings provide novel insights into the molecular mechanisms underlying spinal deformity progression in AIS, linking PTPµ depletion to aberrant OPN-α5β1 integrin signaling and highlighting potential therapeutic targets to stop, mitigate, or prevent scoliosis.
Collapse
Affiliation(s)
- Mohamed Elbakry
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Azrieli Research Center, CHU Sainte-Justine, Montréal, QC H3T 1C5, Canada
- Department of Chemistry, Biochemistry Section, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Nasrin Khatami
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Azrieli Research Center, CHU Sainte-Justine, Montréal, QC H3T 1C5, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Marie-Yvonne Akoume
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Azrieli Research Center, CHU Sainte-Justine, Montréal, QC H3T 1C5, Canada
- Department of Cellular, Molecular Biology and Genetics, Faculty of Medicine, Université des Sciences de la Santé (USS) de Libreville, Libreville BP 18231, Gabon
| | - Cédric Julien
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Azrieli Research Center, CHU Sainte-Justine, Montréal, QC H3T 1C5, Canada
| | - Saadallah Bouhanik
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Azrieli Research Center, CHU Sainte-Justine, Montréal, QC H3T 1C5, Canada
| | - Anita Franco
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Azrieli Research Center, CHU Sainte-Justine, Montréal, QC H3T 1C5, Canada
| | - Iurie Caraus
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Azrieli Research Center, CHU Sainte-Justine, Montréal, QC H3T 1C5, Canada
| | - Wesam Elremaly
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Azrieli Research Center, CHU Sainte-Justine, Montréal, QC H3T 1C5, Canada
| | - Alain Moreau
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Azrieli Research Center, CHU Sainte-Justine, Montréal, QC H3T 1C5, Canada
- Department of Cellular, Molecular Biology and Genetics, Faculty of Medicine, Université des Sciences de la Santé (USS) de Libreville, Libreville BP 18231, Gabon
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
2
|
Ji W, Sun Z, Yang Y, Hu M, Zhang Q, Fu J, Chen J, Huang Y, Cheng Y. Downregulation of RUNX1-Activated Osteopontin Facilitates Burn Wound Healing by Activating the MAPK Pathways. J Burn Care Res 2023; 44:1371-1381. [PMID: 36913234 DOI: 10.1093/jbcr/irad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Indexed: 03/14/2023]
Abstract
Burn wounds require intervention to ensure timely progression to reduce morbidity and mortality. The migrative and proliferative capabilities of keratinocytes are impaired in wounds. Matrix metalloproteinases (MMPs) can degrade the extracellular matrix (ECM), allowing epithelial cells to migrate. As reported, osteopontin can regulate cell migration, cell adhesion, and ECM invasion in endothelial and epithelial cells, and its expression is significantly increased in chronic wounds. Therefore, this study investigates the biological functions of osteopontin and its related mechanisms involved in burn wounds. We established cellular and animal models of burn injury. Levels of osteopontin, RUNX1, MMPs, collagen I, CK19, PCNA, and pathway-associated proteins were measured by RT-qPCR, western blotting, and immunofluorescence staining. Cell viability and migration were examined by CCK-8 and wound scratch assays. Histological changes were analyzed by hematoxylin and eosin staining and Masson's trichrome staining. For in vitro analysis, osteopontin silencing facilitated the growth and migration of HaCaT cells and promoted ECM degradation in HaCaT cells. Mechanistically, RUNX1 bound to osteopontin promoter, and RUNX1 upregulation attenuated the promoting efficacy of osteopontin silencing on cell growth and migration and ECM degradation. Additionally, RUNX1-activated osteopontin inactivated the MAPK signaling pathway. For in vivo analysis, osteopontin depletion facilitated burn wound healing by promoting reepithelialization and ECM degradation. In conclusion, RUNX1 activates the osteopontin expression at the transcriptional level and osteopontin depletion facilitates the recovery of burn wounds by promoting the migration of keratinocytes and reepithelization and ECM degradation by activating the MAPK pathway.
Collapse
Affiliation(s)
- Wei Ji
- Department of Plastic surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Zhibo Sun
- Department of Orthopaedic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yanqing Yang
- Department of Plastic surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Meng Hu
- Department of Plastic surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Qian Zhang
- Department of Plastic surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Jie Fu
- Department of Plastic surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - JunWei Chen
- Department of Plastic surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Yan Huang
- Department of Plastic surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Yanyang Cheng
- Department of Paediatrics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
3
|
Wu M, Yu Z, Matar DY, Karvar M, Chen Z, Ng B, Aoki S, Haug V, Orgill DP, Panayi AC. Human Amniotic Membrane Promotes Angiogenesis in an Oxidative Stress Chronic Diabetic Murine Wound Model. Adv Wound Care (New Rochelle) 2023; 12:301-315. [PMID: 35293255 DOI: 10.1089/wound.2022.0005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Objective: The development of animal models, which adequately replicate the pathophysiology of chronic wounds, has been challenging. In this study, we utilized an oxidative stress (OS) murine model, which was previously developed by our group, to study the effect of a human amniotic membrane (AM) on chronic wound healing. Approach: Forty-five diabetic (genetically obese leptin receptor-deficient mice [db/db]) mice were separated into three groups. Thirty mice received an OS regimen and a 1 - × 1 cm2 full-thickness excisional dorsal wound. The wounds were either covered with AM and occlusive dressing (db/dbOS-AM) or occlusive dressing only (db/dbOS). Fifteen mice did not receive the OS regimen, and were covered with AM and occlusive dressing (db/db-AM). The wounds were photographed, and tissue was harvested at various time points. Results: Vascular density was higher in the AM-treated groups (db/dbOS-AM: 34 ± 12; db/db-AM: 37 ± 14; vs. db/dbOS: 19 ± 9 cluster of differentiation 31 [CD31+]/high power field [HPF] photograph; p = 0.04 and p = 0.003). Vessel maturity was lowest in the db/dbOS group (21% ± 4%; vs. db/dbOS-AM: 38% ± 10%, p = 0.004; db/db-AM: 40% ± 11%, p = 0.0005). Leukocyte infiltration was higher in the AM groups (db/dbOS-AM: 15 ± 4; db/db-AM: 16 ± 4 vs. db/dbOS: 8 ± 3 lymphocyte common antigen [CD45+]/HPF; p = 0.005 and p = 0.06). AM upregulated various proangiogenic factors, including vascular endothelial growth factor (VEGF), and downregulated genes involved in chronicity, such as osteopontin, as visualized through proteome analysis and western blotting. Cell death was lower in the AM groups (db/dbOS-AM: 28 ± 10, db/db-AM: 7 ± 5 vs. db/dbOS: 17% ± 9% Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling [TUNEL+]; p = 0.03 and p < 0.0001). Innovation: This study offers new insight on the mechanisms of action of human AM in chronic wound healing. Conclusion: AM treatment promoted healing in mice with complex chronic wounds. The AM stimulated angiogenesis through upregulation of proangiogenic factors, improving the wound milieu by increasing leukocyte and growth factor delivery and decreasing cell death.
Collapse
Affiliation(s)
- Mengfan Wu
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Plastic Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zhen Yu
- Department of Ophthalmology, Shenzhen Eye Hospital, Shenzhen Key Ophthalmic Laboratory, Jinan University, Shenzhen, China
- Angiogenesis Laboratory, Ophthalmology Department, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| | - Dany Y Matar
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Mehran Karvar
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ziyu Chen
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Brian Ng
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Washington University School of Medicine in Saint Louis, Saint Louis, Missouri, USA
| | - Shimpo Aoki
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Valentin Haug
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Dennis P Orgill
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Adriana C Panayi
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Cárdenas-León CG, Mäemets-Allas K, Klaas M, Lagus H, Kankuri E, Jaks V. Matricellular proteins in cutaneous wound healing. Front Cell Dev Biol 2022; 10:1073320. [PMID: 36506087 PMCID: PMC9730256 DOI: 10.3389/fcell.2022.1073320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Cutaneous wound healing is a complex process that encompasses alterations in all aspects of the skin including the extracellular matrix (ECM). ECM consist of large structural proteins such as collagens and elastin as well as smaller proteins with mainly regulative properties called matricellular proteins. Matricellular proteins bind to structural proteins and their functions include but are not limited to interaction with cell surface receptors, cytokines, or protease and evoking a cellular response. The signaling initiated by matricellular proteins modulates differentiation and proliferation of cells having an impact on the tissue regeneration. In this review we give an overview of the matricellular proteins that have been found to be involved in cutaneous wound healing and summarize the information known to date about their functions in this process.
Collapse
Affiliation(s)
| | - Kristina Mäemets-Allas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Mariliis Klaas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Heli Lagus
- Department of Plastic Surgery and Wound Healing Centre, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Viljar Jaks
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia,Dermatology Clinic, Tartu University Clinics, Tartu, Estonia,*Correspondence: Viljar Jaks,
| |
Collapse
|
5
|
Flora A, Kozera E, Frew JW. Pyoderma Gangrenosum: A Systematic Review of the Molecular Characteristics of Disease. Exp Dermatol 2022; 31:498-515. [PMID: 35114021 DOI: 10.1111/exd.14534] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 01/18/2022] [Accepted: 01/30/2022] [Indexed: 11/30/2022]
Abstract
Pyoderma Gangrenosum is a painful recurrent ulcerative neutrophilic dermatosis in which the pathogenesis is incompletely defined. Current evidence suggests that PG is associated with dysregulation of components of both the innate and adaptive immune system with dysregulation of neutrophil function and contribution of the Th17 immune axis. PG can present in numerous heterogeneous clinical presentations and be associated with multiple inflammatory conditions including Rheumatoid Arthritis, inflammatory bowel disease and hidradenitis suppurativa. However, no critical evaluation of the observed molecular characteristics in PG studies in association with their clinical findings has been assessed. Additionally, emerging evidence suggests a potential role for other cell types and immune pathways including B cells, macrophages, autoantibodies, and the complement system in PG although these have not yet been integrated into the pathogenesis of disease. This systematic review aims to critically evaluate the current molecular observations regarding the pathogenesis of PG and discuss associations with clinical characteristics as well as the evidence supporting novel cell types and immune pathways in PG.
Collapse
Affiliation(s)
- Akshay Flora
- Ingham Institute for Applied Medical Research.,Department of Dermatology, Liverpool Hospital.,University of New South Wales
| | - Emily Kozera
- Ingham Institute for Applied Medical Research.,Department of Dermatology, Liverpool Hospital
| | - John W Frew
- Ingham Institute for Applied Medical Research.,Department of Dermatology, Liverpool Hospital.,University of New South Wales
| |
Collapse
|
6
|
Todorović K, Stojiljković N, Ilić S, Stojanović NM, Todorović A, Stojnev S, Mitić A, Spasić M, Jovanović M. Curcumin nanoliposomes mitigate wound tissue inflammatory response caused by tooth extraction. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e201041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
7
|
Laulund AS, Schwartz FA, Christophersen L, Høiby N, Svendsen JSM, Stensen W, Thomsen K, Cavanagh JP, Moser C. Lactoferricin inspired peptide AMC-109 augments the effect of ciprofloxacin against Pseudomonas aeruginosa biofilm in chronic murine wounds. J Glob Antimicrob Resist 2021; 29:185-193. [PMID: 34954415 DOI: 10.1016/j.jgar.2021.12.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/17/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES The pathophysiology of chronic wounds is characterized by prolonged inflammation, low mitogenic-activity, high protease-/low inhibitor-activity, microbiota changes and biofilm formation, in combination with the etiology of the original insult. One strategy to promote healing is to terminate the parasitism-like-relationship between the biofilm-growing-pathogen and the host response. The antimicrobial peptide AMC-109 is a potential treatment with low resistance-potential and broad-spectrum coverage with rapid bactericidal effect. Our purpose was to investigate if adjunctive AMC-109 could augment the ciprofloxacin effect in a chronic Pseudomonas aeruginosa wound model. METHODS Third-degree-burns were inflicted on 33BALB/c mice. P.Aeruginosa embedded in seaweed alginate was injected under the eschar to mimic a biofilm. Mice were randomized to receive AMC-109, combined AMC-109 and ciprofloxacin, ciprofloxacin or placebo for 5 days followed by sample collection. RESULTS Lower bacterial load was seen in the double treated group when compared to both monotherapy groups (AMC-109, p=0.008 and ciprofloxacin, p=0.03). To evaluate the innate host response, quantification of cytokines and growth factors were performed. The pro-inflammatory response was dampened in the double-treated mice, compared to the mono-ciprofloxacin-treated group (p=0.0009). A lower mobilization of neutrophils from the bone marrow was indicated by reduced granulocyte-colony-stimulating factor in all treatment groups compared to the placebo group. Improved tissue-remodeling was indicated by the highest level of tissue inhibitor of metalloproteases and low metalloprotease level in the double-treated group. CONCLUSIONS AMC-109 revealed adjunctive anti-pseudomonas abilities augmenting the antimicrobial effect of ciprofloxacin in this wound model. The study indicates a potential role for AMC-109 in treating chronic wounds with complicating biofilm infections.
Collapse
Affiliation(s)
- Anne Sofie Laulund
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Henrik Harpestrengs Vej 4A, 2100, Copenhagen, Denmark, phone +4593999557
| | | | - Lars Christophersen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet
| | - Niels Høiby
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet and Department of Immunology and Microbiology (ISIM), University of Copenhagen
| | - John Sigurd Mjøen Svendsen
- Amicoat AS, Sykehusvegen 26, 9019 Tromsø, Norway and the Department of Chemistry, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | - Wenche Stensen
- Department of Chemistry, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | - Kim Thomsen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet
| | - Jorunn Pauline Cavanagh
- Amicoat AS, Sykehusvegen 26, 9019 Tromsø, Norway and the Department of Clinical Medicine, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Claus Moser
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet
| |
Collapse
|
8
|
Larsson A, Helmersson-Karlqvist J, Lind L, Ärnlöv J, Feldreich TR. Strong Associations between Plasma Osteopontin and Several Inflammatory Chemokines, Cytokines, and Growth Factors. Biomedicines 2021; 9:biomedicines9080908. [PMID: 34440113 PMCID: PMC8389577 DOI: 10.3390/biomedicines9080908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
Osteopontin is a member of the proinflammatory cytokine network, a complex system that involves many chemokines, cytokines, and growth factors. The aim of the present study was to study the associations between osteopontin and a large number of chemokines, cytokines, and growth factors. We analyzed plasma and urine osteopontin in 652 men from the Uppsala Longitudinal Study of Adult Men (ULSAM) study cohort and compared the levels with the levels of eighty-five chemokines, cytokines, and growth factors. We found significant associations between plasma osteopontin and 37 plasma biomarkers in a model adjusted for age, and 28 of those plasma biomarkers were significant in a model also adjusting for cardiovascular risk factors. There were no significant associations after Bonferroni adjustment between urine osteopontin and any of the studied plasma cytokine biomarkers. This study shows that circulating osteopontin participates in a protein–protein interaction network of chemokines, cytokines, and growth factors. The network contains responses, pathways, and receptor binding interactions relating to cytokines, regulation of the immune system, and also regulation of apoptosis and intracellular signal transduction.
Collapse
Affiliation(s)
- Anders Larsson
- Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden; (J.H.-K.); (L.L.)
- Correspondence: ; Tel.: +46-(18)-6114271
| | | | - Lars Lind
- Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden; (J.H.-K.); (L.L.)
| | - Johan Ärnlöv
- Division of Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, 171 77 Stockholm, Sweden;
| | | |
Collapse
|
9
|
Laulund AS, Schwartz F, Trøstrup H, Thomsen K, Christophersen L, Calum H, Ciofu O, Høiby N, Moser C. Adjunctive S100A8/A9 Immunomodulation Hinders Ciprofloxacin Resistance in Pseudomonas aeruginosa in a Murine Biofilm Wound Model. Front Cell Infect Microbiol 2021; 11:652012. [PMID: 33912476 PMCID: PMC8072475 DOI: 10.3389/fcimb.2021.652012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/19/2021] [Indexed: 12/24/2022] Open
Abstract
Objective Pseudomonas aeruginosa is known to contribute to the pathogenesis of chronic wounds by biofilm-establishment with increased tolerance to host response and antibiotics. The neutrophil-factor S100A8/A9 has a promising adjuvant effect when combined with ciprofloxacin, measured by quantitative bacteriology, and increased anti- and lowered pro-inflammatory proteins. We speculated whether a S100A8/A9 supplement could prevent ciprofloxacin resistance in infected wounds. Method Full-thickness 2.9cm2-necrosis was inflicted on 32 mice. On day 4, P.aeruginosa in seaweed alginate was injected sub-eschar to mimic a mono-pathogenic biofilm. Mice were randomized to receive ciprofloxacin and S100A8/A9 (n=14), ciprofloxacin (n=12) or saline (n=6). Half of the mice in each group were euthanized day 6 and the remaining day 10 post-infection. Mice were treated until sacrifice. Primary endpoint was the appearance of ciprofloxacin resistant P.aeruginosa. The study was further evaluated by genetic characterization of resistance, means of quantitative bacteriology, wound-size and cytokine-production. Results Three mice receiving ciprofloxacin monotherapy developed resistance after 14 days. None of the mice receiving combination therapy changed resistance pattern. Sequencing of fluoroquinolone-resistance determining regions in the ciprofloxacin resistant isolates identified two high-resistant strains mutated in gyrA C248T (MIC>32µg/ml) and a gyr B mutation was found in the sample with low level resistance (MIC=3µg/ml). Bacterial densities in wounds were lower in the dual treated group compared to the placebo group on both termination days. Conclusion This study supports the ciprofloxacin augmenting effect and indicates a protective effect in terms of hindered ciprofloxacin resistance of adjuvant S100A8/A9 in P.aeruginosa biofilm infected chronic wounds.
Collapse
Affiliation(s)
- Anne S Laulund
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Franziska Schwartz
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Hannah Trøstrup
- Department of Plastic Surgery, Zealand University Hospital, Copenhagen, Denmark
| | - Kim Thomsen
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lars Christophersen
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Henrik Calum
- Department of Clinical Microbiology, Hvidovre Hospital, Hvidovre, Denmark
| | - Oana Ciofu
- Department of Immunology and Microbiology (ISIM), University of Copenhagen, Copenhagen, Denmark
| | - Niels Høiby
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Immunology and Microbiology (ISIM), University of Copenhagen, Copenhagen, Denmark
| | - Claus Moser
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
10
|
Sylakowski K, Wells A. ECM-regulation of autophagy: The yin and the yang of autophagy during wound healing. Matrix Biol 2021; 100-101:197-206. [PMID: 33421547 DOI: 10.1016/j.matbio.2020.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/30/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022]
Abstract
Wound healing is a complex sequence of tissue protection, replacement, and reorganization leading to regenerated tissue. Disruption of any of these steps results in the process being incomplete as an ulcer or over-exuberant as a hypertrophic scar. Over the past decade, it has become evident that the extracellular matrix and associated components orchestrate this process. However, the cellular events that are induced by the extracellular matrix to accomplish wound healing remain to be defined. Herein we propose that matrix-regulated cellular macro-autophagy is key to both the tissue replacement and resolution stages of healing by directing cellular function or apoptosis. Further, disruptions in matrix turnover alter autophagic function leading to chronic wounds or scarring. While the literature that directly investigates autophagy during wound healing is sparse, the emerging picture supports our proposing a model of the centrality of the matrix-autophagy modulation as central to physiologic and pathologic healing.
Collapse
Affiliation(s)
- Kyle Sylakowski
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, United States; VA Pittsburgh Healthcare Systems, Pittsburgh, PA 15213, United States
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, United States; VA Pittsburgh Healthcare Systems, Pittsburgh, PA 15213, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, United States; Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, United States; UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, United States.
| |
Collapse
|
11
|
Raffetto JD, Ligi D, Maniscalco R, Khalil RA, Mannello F. Why Venous Leg Ulcers Have Difficulty Healing: Overview on Pathophysiology, Clinical Consequences, and Treatment. J Clin Med 2020; 10:jcm10010029. [PMID: 33374372 PMCID: PMC7795034 DOI: 10.3390/jcm10010029] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
Venous leg ulcers (VLUs) are one of the most common ulcers of the lower extremity. VLU affects many individuals worldwide, could pose a significant socioeconomic burden to the healthcare system, and has major psychological and physical impacts on the affected individual. VLU often occurs in association with post-thrombotic syndrome, advanced chronic venous disease, varicose veins, and venous hypertension. Several demographic, genetic, and environmental factors could trigger chronic venous disease with venous dilation, incompetent valves, venous reflux, and venous hypertension. Endothelial cell injury and changes in the glycocalyx, venous shear-stress, and adhesion molecules could be initiating events in VLU. Increased endothelial cell permeability and leukocyte infiltration, and increases in inflammatory cytokines, matrix metalloproteinases (MMPs), reactive oxygen and nitrogen species, iron deposition, and tissue metabolites also contribute to the pathogenesis of VLU. Treatment of VLU includes compression therapy and endovenous ablation to occlude the axial reflux. Other interventional approaches such as subfascial endoscopic perforator surgery and iliac venous stent have shown mixed results. With good wound care and compression therapy, VLU usually heals within 6 months. VLU healing involves orchestrated processes including hemostasis, inflammation, proliferation, and remodeling and the contribution of different cells including leukocytes, platelets, fibroblasts, vascular smooth muscle cells, endothelial cells, and keratinocytes as well as the release of various biomolecules including transforming growth factor-β, cytokines, chemokines, MMPs, tissue inhibitors of MMPs (TIMPs), elastase, urokinase plasminogen activator, fibrin, collagen, and albumin. Alterations in any of these physiological wound closure processes could delay VLU healing. Also, these histological and soluble biomarkers can be used for VLU diagnosis and assessment of its progression, responsiveness to healing, and prognosis. If not treated adequately, VLU could progress to non-healed or granulating VLU, causing physical immobility, reduced quality of life, cellulitis, severe infections, osteomyelitis, and neoplastic transformation. Recalcitrant VLU shows prolonged healing time with advanced age, obesity, nutritional deficiencies, colder temperature, preexisting venous disease, deep venous thrombosis, and larger wound area. VLU also has a high, 50-70% recurrence rate, likely due to noncompliance with compression therapy, failure of surgical procedures, incorrect ulcer diagnosis, progression of venous disease, and poorly understood pathophysiology. Understanding the molecular pathways underlying VLU has led to new lines of therapy with significant promise including biologics such as bilayer living skin construct, fibroblast derivatives, and extracellular matrices and non-biologic products such as poly-N-acetyl glucosamine, human placental membranes amnion/chorion allografts, ACT1 peptide inhibitor of connexin 43, sulodexide, growth factors, silver dressings, MMP inhibitors, and modulators of reactive oxygen and nitrogen species, the immune response and tissue metabolites. Preventive measures including compression therapy and venotonics could also reduce the risk of progression to chronic venous insufficiency and VLU in susceptible individuals.
Collapse
Affiliation(s)
- Joseph D. Raffetto
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
- Correspondence: (J.D.R.); (F.M.)
| | - Daniela Ligi
- Department of Biomolecular Sciences, Section of Biochemistry and Biotechnology, Unit of Clinical Biochemistry, University Carlo Bo of Urbino, 61029 Urbino, Italy; (D.L.); (R.M.)
| | - Rosanna Maniscalco
- Department of Biomolecular Sciences, Section of Biochemistry and Biotechnology, Unit of Clinical Biochemistry, University Carlo Bo of Urbino, 61029 Urbino, Italy; (D.L.); (R.M.)
| | - Raouf A. Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Ferdinando Mannello
- Department of Biomolecular Sciences, Section of Biochemistry and Biotechnology, Unit of Clinical Biochemistry, University Carlo Bo of Urbino, 61029 Urbino, Italy; (D.L.); (R.M.)
- Correspondence: (J.D.R.); (F.M.)
| |
Collapse
|
12
|
Abstract
Pyoderma gangrenosum (PG) is a rare neutrophilic dermatosis that presents with rapidly developing, painful skin ulcers hallmarked by undermined borders and peripheral erythema. Epidemiological studies indicate that the average age of PG onset is in the mid-40s, with an incidence of a few cases per million person-years. PG is often associated with a variety of other immune-mediated diseases, most commonly inflammatory bowel disease and rheumatoid arthritis. The cause of PG is not well understood, but PG is generally considered an autoinflammatory disorder. Studies have focused on the role of T cells, especially at the wound margin; these cells may support the destructive autoinflammatory response by the innate immune system. PG is difficult to diagnose as several differential diagnoses are possible; in addition to clinical examination, laboratory tests of biopsied wound tissue are required for an accurate diagnosis, and new validated diagnostic criteria will facilitate the process. Treatment of PG typically starts with fast-acting immunosuppressive drugs (corticosteroids and/or cyclosporine) to reduce inflammation followed by the addition of more slowly acting immunosuppressive drugs with superior adverse event profiles, including biologics (in particular, anti-tumour necrosis factor (TNF) agents). Appropriate wound care is also essential. Future research should focus on PG-specific outcome measures and PG quality-of-life studies.
Collapse
|
13
|
Huang Y, Kyriakides TR. The role of extracellular matrix in the pathophysiology of diabetic wounds. Matrix Biol Plus 2020; 6-7:100037. [PMID: 33543031 PMCID: PMC7852307 DOI: 10.1016/j.mbplus.2020.100037] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/29/2022] Open
Abstract
Impaired healing leading to the formation of ulcerated wounds is a critical concern in patients with diabetes. Abnormalities in extracellular matrix (ECM) production and remodeling contribute to tissue dysfunction and delayed healing. Specifically, diabetes-induced changes in the expression and/or activity of structural proteins, ECM-modifying enzymes, proteoglycans, and matricellular proteins have been reported. In this review, we provide a summary of the key ECM molecules and associated changes in skin and diabetic wounds. Such information should allow for new insights in the understanding of impaired wound healing and lead to the development of ECM-based therapeutic strategies.
Collapse
Affiliation(s)
- Yaqing Huang
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06519, USA.,Department of Pathology, Yale University, New Haven, CT 06519, USA
| | - Themis R Kyriakides
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06519, USA.,Department of Pathology, Yale University, New Haven, CT 06519, USA.,Department of Biomedical Engineering, Yale University, New Haven, CT 06519, USA
| |
Collapse
|