1
|
Yang J, Wang L, Wu R, He Y, Zhao Y, Wang W, Gao X, Wang D, Zhao L, Li W. 3D Bioprinting in Cancer Modeling and Biomedicine: From Print Categories to Biological Applications. ACS OMEGA 2024; 9:44076-44100. [PMID: 39524656 PMCID: PMC11541486 DOI: 10.1021/acsomega.4c06051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
The continuous interaction between tumor cells and the local microenvironment plays a decisive role in tumor development. Selecting effective models to simulate the tumor microenvironment to study the physiological processes of tumorigenesis and progression is extremely important and challenging. Currently, three-dimensional (3D) bioprinting technology makes it possible to replicate a physiologically relevant tumor microenvironment and induce genomic and proteomic expression to better mimic tumors in vivo. Meanwhile, it plays a crucial role in the prevention and treatment of human diseases, contributing to drug delivery and drug screening, tissue development and regenerative medicine. This paper provides an overview of the categories of 3D bioprinting technology, and the recent advances in the bioinks required for printing. In addition, we summarize the current tumor models based on 3D bioprinting and provide an assessment of possible future biological applications.
Collapse
Affiliation(s)
- Jianye Yang
- School
of Life Science and Technology, Shandong
Second Medical University, Weifang 261053, China
| | - Le Wang
- School
of Life Science and Technology, Shandong
Second Medical University, Weifang 261053, China
| | - Ruimei Wu
- School
of Life Science and Technology, Shandong
Second Medical University, Weifang 261053, China
| | - Yanan He
- School
of Life Science and Technology, Shandong
Second Medical University, Weifang 261053, China
| | - Yu Zhao
- School
of Life Science and Technology, Shandong
Second Medical University, Weifang 261053, China
| | - Wenchi Wang
- School
of Life Science and Technology, Shandong
Second Medical University, Weifang 261053, China
| | - Xiaochen Gao
- School
of Life Science and Technology, Shandong
Second Medical University, Weifang 261053, China
| | - Dan Wang
- Department
of Physical Education, School of Foundation Medical, Shandong Second Medical University, Weifang 261053, China
| | - Lidan Zhao
- School
of Life Science and Technology, Shandong
Second Medical University, Weifang 261053, China
| | - Wenfang Li
- School
of Life Science and Technology, Shandong
Second Medical University, Weifang 261053, China
| |
Collapse
|
2
|
Janipour M, Soltaniesmaeili A, Owji SH, Shahhossein Z, Hashemi SS. Auricular cartilage regeneration using chondroitin sulfate-based hydrogel with mesenchymal stem cells in rabbits. Artif Organs 2024; 48:1100-1111. [PMID: 39031117 DOI: 10.1111/aor.14807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/14/2024] [Accepted: 06/02/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Cartilage is an avascular and alymphatic tissue that lacks the intrinsic ability to undergo spontaneous repair and regeneration in the event of significant injury. The efficacy of conventional therapies for invasive cartilage injuries is limited, thereby prompting the emergence of cartilage tissue engineering as a possible alternative. In this study, we fabricated three-dimensional hydrogel films utilizing sodium alginate (SA), gelatin (Gel), and chondroitin sulfate (CS). These films were included with Wharton's jelly mesenchymal stem cells (WJ-MSCs) and intended for cartilage tissue regeneration. METHODS The hydrogel film that were prepared underwent evaluation using various techniques including scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectroscopy, assessment of the degree of swelling, degradation analysis, determination of water vapor transmission rate (WVTR), measurement of water contact angle (WCA), evaluation of mechanical strength, and assessment of biocompatibility. The rabbit ear cartilage regeneration by hydrogel films with and without of WJ-MSCs was studied by histopathological investigations during 15, 30, and 60 days. RESULTS The hydrogel films containing CS exhibited superior metrics compared to other nanocomposites such as better mechanical strength (12.87 MPa in SA/Gel compared to 15.56 in SA/Gel/CS), stability, hydrophilicity, WVTR (3103.33 g/m2/day in SA/Gel compared to 2646.67 in nanocomposites containing CS), and swelling ratio (6.97 to 12.11% in SA/Gel composite compared to 5.03 to 10.90% in SA/Gel/CS). Histopathological studies showed the presence of chondrocyte cells in the lacunae on the 30th day and the complete restoration of the cartilage tissue on the 60th day following the injury in the group of SA/Gel/CS hydrogel containing WJ-MSCs. CONCLUSIONS We successfully fabricated a scaffold composed of alginate, gelatin, and chondroitin sulfate. This scaffold was further enhanced by the incorporation of Wharton's jelly mesenchymal stem cells. Our findings demonstrate that this composite scaffold has remarkable biocompatibility and mechanical characteristics. The present study successfully demonstrated the therapeutic potential of the SA-Gel-CS hydrogel containing WJ-MSCs for cartilage regeneration in rabbits.
Collapse
Affiliation(s)
- Masoud Janipour
- Otolaryngology Research Centre, Department of Otolaryngology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Soltaniesmaeili
- Otolaryngology Research Centre, Department of Otolaryngology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Hossein Owji
- Otolaryngology Research Centre, Department of Otolaryngology, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Shahhossein
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedeh-Sara Hashemi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Fu D, Huang J, Wu X, Li Y, Zhang Y, Chen L, Liu Z, He Y, Zhou Y, Yang L, Hu Z, Miao Y. Shape-fixing hydrogel promotes scarless healing of wounds under tension. Acta Biomater 2024; 183:173-190. [PMID: 38821145 DOI: 10.1016/j.actbio.2024.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024]
Abstract
The healing of a wound under tension (hereafter, "tension wound") often coincides with the development of hypertrophic scars in clinical settings. Currently, compress bandages offer a potential alternative for the healing of tension wounds; however, their application in surgery is limited due to their prefabricated patch form. To overcome this, a tension-shielding hydrogel system was designed using photocurable catechol-grafted hyaluronic acid and tannic-acid silver nanoparticles (hereafter, "HTA system"). The hydrogel exhibited tension-shielding capacity, reducing wound tension via shape-fixation and ultimately reducing scar formation. The HTA hydrogel exhibited superior photothermal antibacterial efficacy, self-healing properties, and effective dissipation of energy, thereby promoting tissue regeneration. The hydrogel significantly inhibited the mechanotransduction pathway, thus preventing Engrailed-1 activation and reducing the fibrotic response. The HTA hydrogel system, therefore, provides a treatment strategy for tension wounds, burn wounds and other wounds that are prone to form hypertrophic scars via creating a tension-free local environment. STATEMENT OF SIGNIFICANCE: In our study, we presented a wound-dressing hydrogel system (HTA) that exhibit shape-fixing capacity in tension wound model. Here, we designed and modified a tension regulator, applied it to mice, and furthermore, established a tension wound model in mice with adjustable tension. Outcomes showed that the HTA hydrogel system can effectively form a shape-fixed environment on tension wounds and dynamic wounds, thus promoting scarless healing. Additionally, HTA performs injectability, rapid crosslinking, biocompatibility, wet adhesion, hemostasis and photothermal antibacterial properties. We believe this research has various potential clinical applications, including scarless-healing in tension wounds, treatment of acute bleeding, treatment of infected wounds, and even internal organ repair.
Collapse
Affiliation(s)
- Danlan Fu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Junfei Huang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaoqi Wu
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Yue Li
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yufan Zhang
- Second Affiliated Hospital of Zhejiang University, Hangzhou 310009, China
| | - Lu Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhen Liu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ye He
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yi Zhou
- Zhejiang Provincial People's Hospital, Hangzhou 314408, China
| | - Lunan Yang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
4
|
Hamedi ZS, Manafi A, Hashemi SS, Mehrabani D, Seddighi A, Tanideh N, Mokhtari M. Healing Effect of Hypericum perforatum in Burn Injuries. World J Plast Surg 2024; 13:57-65. [PMID: 39665012 PMCID: PMC11629761 DOI: 10.61186/wjps.13.3.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 11/09/2024] [Indexed: 12/13/2024] Open
Abstract
Background Burn injury is still the leading cause of mortality and morbidity in burn patients. We comapred healing effect of Hypericum perforatum, silver sulfadiazine and alpha ointments on burn injuries in rat model. Methods Sixty female Sprague-Dawley rats in an animal experimental study were randomly divided to 5 equal groups as H. perforatum, silver sulfadiazine and (SSD), alpha, gel base and the burn injury left untreated. Wounds were assessed macroscopically and histologic after burn injury and on days 7th, 14th and 21st after treatments. Results Burn wounds decreased in size on day 7th in H. perforatum group (P<0.01). Regarding scoring the inflammation, re-epithelialization, angiogenesis, formation of granulation tissue and number of macrophage, the best scores were visible in H. perforatum group, and the worst in the gel base and the burn injury left untreated (P<0.01). Conclusions H. perforatum was shown to significantly induce re-epithelialization, angiogenesis and granulation tissue and decrease the inflammation resulting into a healing process in burn wounds. As H. perforatum is inexpensive and an easily available herbal medicine, it can be considered as a therapeutic of choice to ameliorate burn injuries.
Collapse
Affiliation(s)
- Zahra Sadat Hamedi
- Division of Hematology, Oncology and Palliative Care, Department of Internal Medicine, Virginia Commonwealth University Health System, Richmond, Virginia
| | - Amir Manafi
- Department of Anesthesiology, Arrowhead Regional Medical Center, Colton, California
| | - Seyedeh-Sara Hashemi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Davood Mehrabani
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Comparative and Experimental Medicne Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Li Ka Shing Center for Health Research and Innovation, University of Alberta, Edmonton, AB, Canada
| | - Anahita Seddighi
- Department of Molecular Biology, Universität Wien, Wien, Austria
- Department of Genetics, Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Nader Tanideh
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maral Mokhtari
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Tan L, Ye Z, Zhuang W, Mao B, Li H, Li X, Wu J, Sang H. 3D printed PLGA/MgO/PDA composite scaffold by low-temperature deposition manufacturing for bone tissue engineering applications. Regen Ther 2023; 24:617-629. [PMID: 38034857 PMCID: PMC10681881 DOI: 10.1016/j.reth.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/06/2023] [Accepted: 09/28/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Bones are easily damaged. Biomimetic scaffolds are involved in tissue engineering. This study explored polydopamine (PDA)-coated poly lactic-co-glycolic acid (PLGA)-magnesium oxide (MgO) scaffold properties and its effects on bone marrow mesenchymal stem cells (BMSCs) osteogenic differentiation. Methods PLGA/MgO scaffolds were prepared by low-temperature 3D printing technology and PDA coatings were prepared by immersion method. Scaffold structure was observed by scanning electron microscopy with an energy dispersive spectrometer (SEM-EDS), fourier transform infrared spectrometer (FTIR). Scaffold hydrophilicity, compressive/elastic modulus, and degradation rates were analyzed by water contact angle measurement, mechanical tests, and simulated-body fluid immersion. Rat BMSCs were cultured in scaffold extract. Cell activity on days 1, 3, and 7 was detected by MTT. Cells were induced by osteogenic differentiation, followed by evaluation of alkaline phosphatase (ALP) activity on days 3, 7, and 14 of induction and Osteocalcin, Osteocalcin, and Collagen I expressions. Results The prepared PLGA/MgO scaffolds had dense microparticles. With the increase of MgO contents, the hydrophilicity was enhanced, scaffold degradation rate was accelerated, magnesium ion release rate and scaffold extract pH value were increased, and cytotoxicity was less when magnesium mass ratio was less than 10%. Compared with other scaffolds, compressive and elastic modulus of PLGA/MgO (10%) scaffolds were increased; BMSCs incubated with PLGA/MgO (10%) scaffold extract had higher ALP activity and Osteocalcin, Osteopontin, and Collagen I expressions. PDA coating was prepared in PLGA/MgO (10%) scaffolds and the mechanical properties were not affected. PLGA/MgO (10%)/PDA scaffolds had better hydrophilicity and biocompatibility and promoted BMSC osteogenic differentiation. Conclusion Low-temperature 3D printing PLGA/MgO (10%)/PDA scaffolds had good hydrophilicity and biocompatibility, and were conducive to BMSC osteogenic differentiation.
Collapse
Affiliation(s)
- Liang Tan
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, Guangdong, 518000, PR China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhuofeng Ye
- Department of Orthopedics, Jiangmen Central Hospital, Jiangmen, China
| | - Weida Zhuang
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, Guangdong, 518000, PR China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Beini Mao
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, Guangdong, 518000, PR China
| | - Hetong Li
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, Guangdong, 518000, PR China
| | - Xiuwang Li
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, Guangdong, 518000, PR China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiachang Wu
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, Guangdong, 518000, PR China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hongxun Sang
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, Guangdong, 518000, PR China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Liang W, Ni N, Huang Y, Lin C. An Advanced Review: Polyurethane-Related Dressings for Skin Wound Repair. Polymers (Basel) 2023; 15:4301. [PMID: 37959982 PMCID: PMC10649939 DOI: 10.3390/polym15214301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
The inability of wounds to heal effectively through normal repair has become a burden that seriously affects socio-economic development and human health. The therapy of acute and chronic skin wounds still poses great clinical difficulty due to the lack of suitable functional wound dressings. It has been found that dressings made of polyurethane exhibit excellent and diverse biological properties, but lack the functionality of clinical needs, and most dressings are unable to dynamically adapt to microenvironmental changes during the healing process at different stages of chronic wounds. Therefore, the development of multifunctional polyurethane composite materials has become a hot topic of research. This review describes the changes in physicochemical and biological properties caused by the incorporation of different polymers and fillers into polyurethane dressings and describes their applications in wound repair and regeneration. We listed several polymers, mainly including natural-based polymers (e.g., collagen, chitosan, and hyaluronic acid), synthetic-based polymers (e.g., polyethylene glycol, polyvinyl alcohol, and polyacrylamide), and some other active ingredients (e.g., LL37 peptide, platelet lysate, and exosomes). In addition to an introduction to the design and application of polyurethane-related dressings, we discuss the conversion and use of advanced functional dressings for applications, as well as future directions for development, providing reference for the development and new applications of novel polyurethane dressings.
Collapse
Affiliation(s)
| | | | | | - Changmin Lin
- Department of Histology and Embryology, Shantou University Medical College, Shantou 515041, China; (W.L.); (N.N.); (Y.H.)
| |
Collapse
|
7
|
Abbasi S, Rafati A, Hosseini SMH, Roohinejad S, Hashemi S, Hashemi Gahruie H, Rashidinejad A. The internal aqueous phase gelation improves the viability of probiotic cells in a double water/oil/water emulsion system. Food Sci Nutr 2023; 11:5978-5988. [PMID: 37823133 PMCID: PMC10563674 DOI: 10.1002/fsn3.3532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 10/13/2023] Open
Abstract
This research studied the viability of probiotic bacterium Lactobacillus plantarum (L. plantarum) encapsulated in the internal aqueous phase (W 1) of a water-in-oil-in-water (W 1/O/W 2) emulsion system, with the help of gelation and different gelling agents. Additionally, the physicochemical, rheological, and microstructural properties of the fabricated emulsion systems were assessed over time under the effect of W 1 gelation. The average droplet size and zeta potential of the control system and the systems fabricated using gelatin, alginate, tragacanth gum, and carrageenan were 14.7, 12.0, 5.1, 6.4, and 7.3 μm and - 21.1, -34.1, -46.2, -38.3, and -34.7 mV, respectively. The results showed a significant increase in the physical stability of the system and encapsulation efficiency of L. plantarum after the W 1 gelation. The internal phase gelation significantly increased the viability of bacteria against heat and acidic pH, with tragacanth gum being the best gelling agent for increasing the viability of L. plantarum (28.05% and 16.74%, respectively). Apparent viscosity and rheological properties of emulsions were significantly increased after the W 1 gelation, particularly in those jellified with alginate. Overall, L. plantarum encapsulation in W 1/O/W 2 emulsion, followed by the W 1 gelation using tragacanth gum as the gelling agent, could increase both stability and viability of this probiotic bacteria.
Collapse
Affiliation(s)
- Shahrokh Abbasi
- Food Science and Technology DepartmentIslamic Azad UniversitySarvestanIran
| | - Alireza Rafati
- Food Science and Technology DepartmentIslamic Azad UniversitySarvestanIran
| | | | - Shahin Roohinejad
- Burn and Wound Healing Research CenterShiraz University of Medical SciencesShirazIran
| | - Seyedeh‐Sara Hashemi
- Burn and Wound Healing Research CenterShiraz University of Medical SciencesShirazIran
| | - Hadi Hashemi Gahruie
- Department of Food Science and Technology, School of AgricultureShiraz UniversityShirazIran
| | | |
Collapse
|
8
|
Dam P, Celik M, Ustun M, Saha S, Saha C, Kacar EA, Kugu S, Karagulle EN, Tasoglu S, Buyukserin F, Mondal R, Roy P, Macedo MLR, Franco OL, Cardoso MH, Altuntas S, Mandal AK. Wound healing strategies based on nanoparticles incorporated in hydrogel wound patches. RSC Adv 2023; 13:21345-21364. [PMID: 37465579 PMCID: PMC10350660 DOI: 10.1039/d3ra03477a] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
The intricate, tightly controlled mechanism of wound healing that is a vital physiological mechanism is essential to maintaining the skin's natural barrier function. Numerous studies have focused on wound healing as it is a massive burden on the healthcare system. Wound repair is a complicated process with various cell types and microenvironment conditions. In wound healing studies, novel therapeutic approaches have been proposed to deliver an effective treatment. Nanoparticle-based materials are preferred due to their antibacterial activity, biocompatibility, and increased mechanical strength in wound healing. They can be divided into six main groups: metal NPs, ceramic NPs, polymer NPs, self-assembled NPs, composite NPs, and nanoparticle-loaded hydrogels. Each group shows several advantages and disadvantages, and which material will be used depends on the type, depth, and area of the wound. Better wound care/healing techniques are now possible, thanks to the development of wound healing strategies based on these materials, which mimic the extracellular matrix (ECM) microenvironment of the wound. Bearing this in mind, here we reviewed current studies on which NPs have been used in wound healing and how this strategy has become a key biotechnological procedure to treat skin infections and wounds.
Collapse
Affiliation(s)
- Paulami Dam
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Merve Celik
- Biomedical Engineering Graduate Program, TOBB University of Economics and Technology Ankara 06560 Turkey
| | - Merve Ustun
- Graduate School of Sciences and Engineering, Koç University Istanbul 34450 Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
| | - Sayantan Saha
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Chirantan Saha
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Elif Ayse Kacar
- Graduate Program of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey Istanbul Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
| | - Senanur Kugu
- Graduate Program of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey Istanbul Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
| | - Elif Naz Karagulle
- Biomedical Engineering Graduate Program, TOBB University of Economics and Technology Ankara 06560 Turkey
| | - Savaş Tasoglu
- Mechanical Engineering Department, School of Engineering, Koç University Istanbul Turkey
- Koç University Translational Medicine Research Center (KUTTAM), Koç University Istanbul Turkey
| | - Fatih Buyukserin
- Department of Biomedical Engineering, TOBB University of Economics and Technology Ankara 06560 Turkey
| | - Rittick Mondal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Priya Roy
- Department of Law, Raiganj University North Dinajpur West Bengal India
| | - Maria L R Macedo
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária 79070900 Campo Grande Mato Grosso do Sul 70790160 Brazil
| | - Octávio L Franco
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Campo Grande 79117900 Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília Brasília DF Brazil
| | - Marlon H Cardoso
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária 79070900 Campo Grande Mato Grosso do Sul 70790160 Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Campo Grande 79117900 Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília Brasília DF Brazil
| | - Sevde Altuntas
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
- Department of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey Istanbul Turkey
| | - Amit Kumar Mandal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
- Centre for Nanotechnology Sciences (CeNS), Raiganj University North Dinajpur West Bengal India
| |
Collapse
|
9
|
Bardania H, Jafari F, Baneshi M, Mahmoudi R, Ardakani MT, Safari F, Barmak MJ. Folic Acid-Functionalized Albumin/Graphene Oxide Nanocomposite to Simultaneously Deliver Curcumin and 5-Fluorouracil into Human Colorectal Cancer Cells: An In Vitro Study. BIOMED RESEARCH INTERNATIONAL 2023; 2023:8334102. [PMID: 37304465 PMCID: PMC10256446 DOI: 10.1155/2023/8334102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/03/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023]
Abstract
Background Nowadays, due to various inherent properties, graphene-based nanoparticles are widely used in drug delivery research. On the other hand, folate receptors are highly expressed on the surface of human tumor cells. In this work, to enhance the 5-fluorouracil (5FU) and curcumin (Cur) effects on colon cancer, we constructed a folic acid- (FA-) modified codelivery carrier based on graphene nanoparticles (GO-Alb-Cur-FA-5FU). Materials and Methods The HUVEC and HT-29 were selected for evaluating the antitumor effect of the prepared nanocarriers. The structure of nanocarriers was characterized by FTIR spectroscopy, X-ray diffraction analysis, TEM microscopy, and a DLS analyzer. The efficiency of the prepared carrier was evaluated by fluorescence microscopy using Annexin V and the PI kit. The cytotoxicity of the carrier's component individually and the efficacy of the drug carrier GO-Alb-Cur-FA-5FU were assessed by MTT. Results The results of the pharmacological tests indicated that the new nanoparticles cause increased apparent toxicity in HT-29 cells. The apoptosis rate of the HT-29 and HUVEC cells treated with IC50 values of GO-Alb-Cur-FA-5FU for 48 h was higher than the cells treated with IC50 values of 5FU and Cur individually, which indicated the greater inhibitory efficacy of GO-Alb-Cur-FA-5FU than free drugs. Conclusion The designed GO-Alb-CUR-FA-5FU delivery system can be applied for targeting colon cancer cells and can be severe as a potential candidate for future drug development.
Collapse
Affiliation(s)
- Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Farajollah Jafari
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Marzieh Baneshi
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia, Canada B1P 6L2
| | - Reza Mahmoudi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Maryam Tajali Ardakani
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Farshad Safari
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mehrzad Jafari Barmak
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
10
|
Shahghasempour L, Hosseinzadeh S, Haddadi A, Kabiri M. Evaluation of Lactobacillus plantarum and PRGF as a new bioactive multi-layered scaffold PU/PRGF/gelatin/PU for wound healing. Tissue Cell 2023; 82:102091. [PMID: 37104974 DOI: 10.1016/j.tice.2023.102091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/17/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023]
Abstract
The effect of tissue engineering strategies in combination with Lactobacillus plantarum and platelet-rich growth factor (PRGF) with the aim of creating an appropriate wound dressing can be useful in wound healing and infection prevention in patients suffering from acute and chronic skin damages. Therefore, in this study, a new approach was employed to create a bioactive multilayer electrospun scaffold composed of polyurethane (PU), PRGF, and gelatin fibers, then human adipose-derived mesenchymal stem cells (hAMSCs), fibroblast cells (HU-02) and L. plantarum were cultured on the scaffold. The physicochemical properties, biocompatibility, and antibacterial activity of the scaffold were evaluated. In addition, the expression of the migration and proliferation genes of fibroblast cells were investigated by real-time PCR (polymerase chain reaction). Mitochondrial activity assays revealed that PRFG and L. plantarum had a significant positive effect on the viability of target co-cultured cells.Fluorescent and SEM (scanning electron microscopy) images presented the cells and bacterial proliferation and adhesion in hydrophilic scaffolds within 21 days. The sustained release of PRGF from scaffolds with a zero-order pattern was confirmed. RT-PCR analysis revealed that PRGF elevated the expression of VEGF genes up to fourfold, but L. plantarum had a better effect on DDR2 gene expression compared to the TCPS group. Antibacterial tests showed that L. plantarum has a bacterial load reduction of more than 70% in CFU/mL. The present scaffold is an appropriate model for cell attachment, migration, proliferation, and infection prevention.
Collapse
Affiliation(s)
- Lida Shahghasempour
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Simzar Hosseinzadeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Azam Haddadi
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran.
| | - Mahboubeh Kabiri
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
11
|
González-Torres M, Elizalde-Cárdenas A, Leyva-Gómez G, González-Mendoza O, Lima E, Alfonso-Núñez I, Abad-Contreras DE, Del Prado-Audelo M, Pichardo-Bahena R, Carlos-Martínez A, Ribas-Aparicio RM. Combined use of novel chitosan-grafted N-hydroxyethyl acrylamide polyurethane and human dermal fibroblasts as a construct for in vitro-engineered skin. Int J Biol Macromol 2023; 238:124136. [PMID: 36965555 DOI: 10.1016/j.ijbiomac.2023.124136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/10/2023] [Accepted: 03/19/2023] [Indexed: 03/27/2023]
Abstract
A rich plethora of information about grafted chitosan (CS) for medical use has been reported. The capability of CS-grafted poly(N-hydroxyethyl acrylamide) (CS-g-PHEAA) to support human dermal fibroblasts (HDFs) in vitro has been proven. However, CS-grafted copolymers lack good stiffness and the characteristic microstructure of a cellular matrix. In addition, whether CS-g-PHEAA can be used to prepare a scaffold with a suitable morphology and mechanical properties for skin tissue engineering (STE) is unclear. This study aimed to show for the first time that step-growth polymerizations can be used to obtain polyurethane (PU) platforms of CS-g-PHEAA, which can also have enhanced microhardness and be suitable for in vitro cell culture. The PU prepolymers were prepared from grafted CS, polyethylene glycol, and 1,6-hexamethylene diisocyanate. The results proved that a poly(saccharide-urethane) [(CS-g-PHEAA)-PU] could be successfully synthesized with a more suitable microarchitecture, thermal properties, and topology than CS-PU for the dynamic culturing of fibroblasts. Cytotoxicity, proliferation, histological and immunophenotype assessments revealed significantly higher biocompatibility and cell proliferation of the derivative concerning the controls. Cells cultured on (CS-g-PHEAA)-PU displayed a quiescent state compared to those cultured on CS-PU, which showed an activated phenotype. These findings may be critical factors in future studies establishing wound dressing models.
Collapse
Affiliation(s)
- Maykel González-Torres
- Conacyt & Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", Ciudad de Mexico 14389, Mexico.
| | | | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
| | - Oswaldo González-Mendoza
- Conacyt & Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", Ciudad de Mexico 14389, Mexico
| | - Enrique Lima
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Israel Alfonso-Núñez
- Laboratorio de Biomateriales, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - David Eduardo Abad-Contreras
- Laboratorio de Biomateriales, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - María Del Prado-Audelo
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, Mexico
| | - Raúl Pichardo-Bahena
- Servicio de Anatomía Patológica, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", Ciudad de Mexico 14389, Mexico
| | - Alberto Carlos-Martínez
- Laboratorio de Microscopia Electrónica, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", Ciudad de Mexico 14389, Mexico
| | - Rosa María Ribas-Aparicio
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico, 07738, Mexico
| |
Collapse
|
12
|
Hashemi SS, Saadatjo Z, Mahmoudi R, Delaviz H, Bardania H, Rajabi SS, Rafati A, Zarshenas MM, Barmak MJ. Preparation and evaluation of polycaprolactone/chitosan/Jaft biocompatible nanofibers as a burn wound dressing. Burns 2021; 48:1690-1705. [PMID: 34973854 DOI: 10.1016/j.burns.2021.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 12/30/2022]
Abstract
Tissue engineering is an emerging method for replacing damaged tissues. In this study, the potential application of electrospun polycaprolactone/chitosan/ the internal layer of oak fruit (Jaft) as skin scaffolds was investigated. A combination of Polycaprolactone (PCL), chitosan (CH), and the internal layer of oak fruit (Jaft) was used to incorporate mechanical properties of synthetic polymers, biological properties of natural polymers, and antibacterial activity of Jaft. Physical and morphological characteristics of prepared scaffolds were investigated using a scanning electron microscope (SEM), mechanical analysis, swelling ratio, and contact angle. Moreover, chemical and biological properties were evaluated by Fourier-transform infrared spectroscopy (FTIR), chromatography, flow cytometry, DAPI staining, MTT assay, and trypan blue exclusion assay. Obtained results demonstrated that the fabricated scaffolds have good mechanical properties. Moreover, the addition of chitosan and Jaft to the PCL scaffolds improved their water absorption capacity as well as surface hydrophilicity. MTT results showed the fabricated nanofibrous scaffolds have adequate cell viability, which is higher than the cell culture plate at each time point of culture. Furthermore, SEM images of cultured scaffolds, trypan blue exclusion assay, and DAPI staining confirmed that fibroblast cells could be well-attached and proliferate on the PCL/CH/Jaft scaffolds. Results have proven that this novel bioactive scaffold has promising mechanical properties, suitable biocompatibility in vitro, and in vivo. Consequently, it could be a promising candidate for skin tissue engineering applications.
Collapse
Affiliation(s)
- Seyedeh-Sara Hashemi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zohreh Saadatjo
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Reza Mahmoudi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Hamdollah Delaviz
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Seyedeh-Somayeh Rajabi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Alireza Rafati
- Division of Pharmacology and Pharmaceutical Chemistry, Sarvestan Branch, Islamic Azad University, Sarvestan, Iran
| | - Mohammad M Zarshenas
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrzad Jafari Barmak
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|