1
|
Lu X, Zhou L, Song W. Recent Progress of Electrospun Nanofiber Dressing in the Promotion of Wound Healing. Polymers (Basel) 2024; 16:2596. [PMID: 39339060 PMCID: PMC11435701 DOI: 10.3390/polym16182596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The nanofiber materials of three-dimensional spatial structure synthesized by electrospun have the characteristics of high porosity, high specific surface area, and high similarity to the natural extracellular matrix (ECM) of the human body. These are beneficial for absorbing wound exudate, effectively blocking the invasion of external bacteria, and promoting cell respiration and proliferation, which provides an ideal microenvironment for wound healing. Moreover, electrospun nanofiber dressings can flexibly load drugs according to the condition of the wound, further promoting wound healing. Recently, electrospun nanofiber materials have shown promising application prospects as medical dressings in clinical. Based on current research, this article reviewed the development history of wound dressings and the principles of electrospun technology. Subsequently, based on the types of base material, polymer-based electrospun nanofiber dressing and electrospun nanofiber dressing containing drug-releasing factors were discussed. Furthermore, the application of electrospun nanofiber dressing on skin tissue is highlighted. This review aims to provide a detailed overview of the current research on electrospun nanomaterials for wound healing, addressing challenges and suggesting future research directions to advance the field of electrospun dressings in wound healing.
Collapse
Affiliation(s)
- Xiaoqi Lu
- School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Libo Zhou
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Weiye Song
- School of Mechanical Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
2
|
Mayer DO, Tettelbach WH, Ciprandi G, Downie F, Hampton J, Hodgson H, Lazaro-Martinez JL, Probst A, Schultz G, Stürmer EK, Parnham A, Frescos N, Stang D, Holloway S, Percival SL. Best practice for wound debridement. J Wound Care 2024; 33:S1-S32. [PMID: 38829182 DOI: 10.12968/jowc.2024.33.sup6b.s1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Affiliation(s)
- Dieter O Mayer
- General and Vascular Surgeon, Institute for Advanced Wound Care and Education, Hausen am Albis, Switzerland
| | - William H Tettelbach
- Chief Medical Officer, RestorixHealth, Metairie, LA; Adjunct Assistant Professor, Duke University School of Medicine, Durham, NC, US
| | - Guido Ciprandi
- Plastic and Paediatric Surgeon, Bambino Gesu' Children's Hospital, Research Institute, Rome, Italy
| | - Fiona Downie
- Senior Lecturer Advanced Practice, Faculty of Health, Education, Medicine and Social Care, Anglia Ruskin University, UK
| | - Jane Hampton
- Consultant Nurse, Aarhus Kommune, Middle Jutland, Denmark
| | - Heather Hodgson
- Lead Nurse, Tissue Viability, Acute and Partnerships, NHS Greater Glasgow and Clyde, UK
| | | | - Astrid Probst
- ANP Woundmanagement, Kreiskliniken Reutlingen gGmbH, Germany
| | - Greg Schultz
- Professor of Obstetrics and Gynecology, Director, Institute for Wound Research, University of Florida, US
| | - Ewa Klara Stürmer
- Surgical Head of the Comprehensive Wound Centre UKE, Head of Translational Wound Research, Department of Vascular Medicine, University Medical Center Hamburg-Eppendorf, Germany
| | - Alison Parnham
- Teaching Associate, Clinical Nurse specialist, Tissue Viability, University of Nottingham, UK
| | | | - Duncan Stang
- Podiatrist and Diabetes Foot Coordinator for Scotland, UK
| | - Samantha Holloway
- Reader and Programme Director, Masters in Wound Healing and Tissue Repair, Centre for Medical Education, School of Medicine, Cardiff University, UK
| | - Steve L Percival
- CEO and Director, Biofilm Centre, 5D Health Protection Group and Professor (Hon), Faculty of Biology, Medicine and Health, University of Manchester, UK
| |
Collapse
|
3
|
Zhan X, Wang D, Wang H, Chen H, Wu X, Li T, Qi J, Chen T, Wu D, Gao Y. Revitalizing Skin Repair: Unveiling the Healing Power of Livisin, a Natural Peptide Calcium Mimetic. Toxins (Basel) 2023; 16:21. [PMID: 38251238 PMCID: PMC10819626 DOI: 10.3390/toxins16010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
When the skin is damaged, accelerating the repair of skin trauma and promoting the recovery of tissue function are crucial considerations in clinical treatment. Previously, we isolated and identified an active peptide (livisin) from the skin secretion of the frog Odorrana livida. Livisin exhibited strong protease inhibitory activity, water solubility, and stability, yet its wound-healing properties have not yet been studied. In this study, we assessed the impact of livisin on wound healing and investigated the underlying mechanism contributing to its effect. Our findings revealed livisin effectively stimulated the migration of keratinocytes, with the underlying mechanisms involved the activation of CaSR as a peptide calcium mimetic. This activation resulted in the stimulation of the CaSR/E-cadherin/EGFR/ERK signaling pathways. Moreover, the therapeutic effects of livisin were partially reduced by blocking the CaSR/E-cadherin/EGFR/ERK signaling pathway. The interaction between livisin and CaSR was further investigated by molecular docking. Additionally, studies using a mouse full-thickness wound model demonstrated livisin could accelerate skin wound healing by promoting re-epithelialization and collagen deposition. In conclusion, our study provides experimental evidence supporting the use of livisin in skin wound healing, highlighting its potential as an effective therapeutic option.
Collapse
Affiliation(s)
- Xuehui Zhan
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (X.Z.); (D.W.); (H.W.); (T.L.); (J.Q.)
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325015, China; (H.C.); (X.W.)
| | - Danni Wang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (X.Z.); (D.W.); (H.W.); (T.L.); (J.Q.)
| | - Hanfei Wang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (X.Z.); (D.W.); (H.W.); (T.L.); (J.Q.)
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325015, China; (H.C.); (X.W.)
| | - Xinyi Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325015, China; (H.C.); (X.W.)
| | - Tao Li
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (X.Z.); (D.W.); (H.W.); (T.L.); (J.Q.)
| | - Junmei Qi
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (X.Z.); (D.W.); (H.W.); (T.L.); (J.Q.)
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK;
| | - Di Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325015, China; (H.C.); (X.W.)
| | - Yitian Gao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (X.Z.); (D.W.); (H.W.); (T.L.); (J.Q.)
| |
Collapse
|
4
|
Rippon MG, Forster J, Rogers AA. Hydro-responsive wound dressings for treating hard-to-heal wounds: a narrative review of the clinical evidence—part 2. J Wound Care 2022; 31:330-338. [DOI: 10.12968/jowc.2022.31.4.330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This narrative clinical review summarises the key evidence in support for the use of a hydro-responsive wound dressing, HydroTac (HRWD-2, PAUL HARTMANN AG, Germany) to address key aspects associated with the treatment of both acute and hard-to-heal wounds. This review demonstrates how HRWD-2 can be used in general to address the challenges presented by a wide range of wound types and skin injuries. It highlights the ability of HRWD-2 to regulate an optimal moist wound environment that promotes wound progression and healing. Key aspects covered in this review include the dressing's ability to: promote certain phases of the wound healing response (for example, re-epithelialisation) address the concepts and needs for wound progression as set out in the TIME wound management framework provide an optimal hydration level reduce tissue trauma and pain at dressing change.
Collapse
Affiliation(s)
- Mark G Rippon
- University of Huddersfield, Queensgate, Huddersfield, UK
| | - Jan Forster
- Wound Center Links der Weser, 28277 Bremen, Germany
| | | |
Collapse
|