1
|
Cecchetti C, Belardinelli E, Dionese P, Teglia R, Fazzeri R, D’ Apice MR, Vestito A, Pagotto U, Gambineri A. Is it possible to achieve an acceptable disease control by dietary therapy alone in Berardinelli Seip type 1? Experience from a case report. Front Endocrinol (Lausanne) 2023; 14:1190363. [PMID: 37347108 PMCID: PMC10281053 DOI: 10.3389/fendo.2023.1190363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/19/2023] [Indexed: 06/23/2023] Open
Abstract
Background and objective Severe metabolic complications generally manifest at an early age in Berardinelli - Seip congenital lipodystrophy (BSCL) and their management is especially challenging. Nutritional intervention with low lipid diets is considered by experts to be fundamental in treating the disease when associated with medical therapy, however little is known about the beneficial effects of dietary interventions alone. Aim To underline the importance of a well-structured low-fat diet in BSCL patients. Methods and results A BSCL male patient strictly followed a hypocaloric hypolipemic diet (60% carbohydrates, 22% fats and 18% proteins) since clinical diagnosis at the age of one year. Interestingly, pharmacological interventions were not required at any point during the follow-up. Aged 16 years the patient was referred to our center. Biochemistry, hormonal evaluation, 75 mg oral glucose tolerance test, cardiac evaluation and abdominal ultrasound were performed, revealing no abnormalities. Genetic analysis and leptin dosage were carried out, confirming the diagnosis of BSCL type 1 (homozygosity for c.493-1G>C pathogenic variant in AGPAT2 gene) and showing undetectable circulating levels of leptin (< 0.2 mcg/L). Diet therapy alone was therefore maintained, scheduling follow-up visits every six months, with acceptable disease control ever since. Conclusions This report proves how a low-fat diet is of great help in the management of BSCL and its complications. In addition, a specific hypolipemic diet could be used alone as an effective treatment in selected cases with high compliance and, probably, a milder phenotype.
Collapse
Affiliation(s)
- Carolina Cecchetti
- Division of Endocrinology and Diabetes Prevention and Care, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), University Hospital of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Elisabetta Belardinelli
- Division of Endocrinology and Diabetes Prevention and Care, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), University Hospital of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Paola Dionese
- Division of Endocrinology and Diabetes Prevention and Care, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), University Hospital of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Rita Teglia
- Division of Endocrinology and Diabetes Prevention and Care, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), University Hospital of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Roberta Fazzeri
- Division of Endocrinology and Diabetes Prevention and Care, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), University Hospital of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | | | - Amanda Vestito
- Gastroenterology Unit, Department of Digestive Diseases, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Uberto Pagotto
- Division of Endocrinology and Diabetes Prevention and Care, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), University Hospital of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Alessandra Gambineri
- Division of Endocrinology and Diabetes Prevention and Care, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), University Hospital of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Su X, Lin Y, Liu L, Mei H, Xu A, Zeng C, Sheng H, Cheng J, Shao Y, Zheng R, Ting TH, Zhang W, Li X. Features of BSCL2 related congenital generalized lipodystrophy in China: long-term follow-up of three patients and literature review. J Pediatr Endocrinol Metab 2023; 36:74-80. [PMID: 36433712 DOI: 10.1515/jpem-2022-0372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Congenital generalized lipodystrophy (CGL) is a group of rare autosomal inherited diseases characterized by a widespread loss of adipose tissue. The main purpose of this study was to evaluate the features of Chinese patients with CGL2. METHODS Three patients diagnosed with CGL2 from our center were reviewed. Data on clinical features, results of laboratory analyses, and previous treatments were retrospectively collected. This study also reviewed studies that reported patients diagnosed with CGL2 in the last 30 years. RESULTS All patients presented a lack of subcutaneous fat, hypertriglyceridemia, reversed triangular faces, acanthosis nigricans, and hepatomegaly within the first six months of life. All three patients developed splenomegaly, and mental retardation in later life. Dietary control dramatically lowered triglyceride levels in all patients. One patient presented with diabetes mellitus at 1 year-old. Although combined therapy with low fat diet and metformin maintained normal levels of blood lipid and glucose, this patient developed hypertrophic cardiomyopathy at the age of three. By a literature review on all Chinese cases with CGL2, it is known that classic manifestations such as hypertriglyceridemia, hepatomegaly and diabetes mellitus can occur shortly after birth, and early diagnosis and treatment can improve quality of life. In this cohort, the most frequent variations are c.782dupG and c.974dup in the BSCL2 gene. However, the same genotype may have different clinical phenotypes in patients with CGL2. CONCLUSIONS This study not only described the clinical and genetic features of three patients with CGL2 in China, but also reviewed literature about CGL2 around the world.
Collapse
Affiliation(s)
- Xueying Su
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yunting Lin
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Li Liu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Huifen Mei
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Aijing Xu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chunhua Zeng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Huiying Sheng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing Cheng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yongxian Shao
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ruidan Zheng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tzer Hwu Ting
- Department of Pediatrics, Univeristy Putra Malaysia, Serdang, Selangor, Malaysia
| | - Wen Zhang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiuzhen Li
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Li Y, Yang X, Peng L, Xia Q, Zhang Y, Huang W, Liu T, Jia D. Role of Seipin in Human Diseases and Experimental Animal Models. Biomolecules 2022; 12:biom12060840. [PMID: 35740965 PMCID: PMC9221541 DOI: 10.3390/biom12060840] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/05/2023] Open
Abstract
Seipin, a protein encoded by the Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2) gene, is famous for its key role in the biogenesis of lipid droplets and type 2 congenital generalised lipodystrophy (CGL2). BSCL2 gene mutations result in genetic diseases including CGL2, progressive encephalopathy with or without lipodystrophy (also called Celia’s encephalopathy), and BSCL2-associated motor neuron diseases. Abnormal expression of seipin has also been found in hepatic steatosis, neurodegenerative diseases, glioblastoma stroke, cardiac hypertrophy, and other diseases. In the current study, we comprehensively summarise phenotypes, underlying mechanisms, and treatment of human diseases caused by BSCL2 gene mutations, paralleled by animal studies including systemic or specific Bscl2 gene knockout, or Bscl2 gene overexpression. In various animal models representing diseases that are not related to Bscl2 mutations, differential expression patterns and functional roles of seipin are also described. Furthermore, we highlight the potential therapeutic approaches by targeting seipin or its upstream and downstream signalling pathways. Taken together, restoring adipose tissue function and targeting seipin-related pathways are effective strategies for CGL2 treatment. Meanwhile, seipin-related pathways are also considered to have potential therapeutic value in diseases that are not caused by BSCL2 gene mutations.
Collapse
Affiliation(s)
- Yuying Li
- West China Pancreatitis Centre, Centre for Integrated Traditional Chinese Medicine and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.L.); (X.Y.); (Q.X.)
| | - Xinmin Yang
- West China Pancreatitis Centre, Centre for Integrated Traditional Chinese Medicine and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.L.); (X.Y.); (Q.X.)
| | - Linrui Peng
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu 610041, China; (L.P.); (Y.Z.)
| | - Qing Xia
- West China Pancreatitis Centre, Centre for Integrated Traditional Chinese Medicine and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.L.); (X.Y.); (Q.X.)
| | - Yuwei Zhang
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu 610041, China; (L.P.); (Y.Z.)
| | - Wei Huang
- West China Pancreatitis Centre, Centre for Integrated Traditional Chinese Medicine and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.L.); (X.Y.); (Q.X.)
- Institutes for Systems Genetics & Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (W.H.); (T.L.)
| | - Tingting Liu
- West China Pancreatitis Centre, Centre for Integrated Traditional Chinese Medicine and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.L.); (X.Y.); (Q.X.)
- Correspondence: (W.H.); (T.L.)
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China;
| |
Collapse
|
4
|
Iqbal J, Jiang HL, Wu HX, Li L, Zhou YH, Hu N, Xiao F, Wang T, Xu SN, Zhou HD. Hereditary severe insulin resistance syndrome: Pathogenesis, pathophysiology, and clinical management. Genes Dis 2022. [PMID: 37492723 PMCID: PMC10363564 DOI: 10.1016/j.gendis.2022.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Severe insulin resistance has been linked to some of the most globally prevalent disorders, such as diabetes mellitus, nonalcoholic fatty liver disease, polycystic ovarian syndrome, and hypertension. Hereditary severe insulin resistance syndrome (H-SIRS) is a rare disorder classified into four principal categories: primary insulin receptor defects, lipodystrophies, complex syndromes, and obesity-related H-SIRS. Genes such as INSR, AKT2, TBC1D4, AGPAT2, BSCL2, CAV1, PTRF, LMNA, PPARG, PLIN1, CIDEC, LIPE, PCYT1A, MC4R, LEP, POMC, SH2B1, RECQL2, RECQL3, ALMS1, PCNT, ZMPSTE24, PIK3R1, and POLD1 have been linked to H-SIRS. Its clinical features include insulin resistance, hyperglycemia, hyperandrogenism, severe dyslipidemia, fatty liver, abnormal topography of adipose tissue, and low serum leptin and adiponectin levels. Diagnosis of H-SIRS is based on the presence of typical clinical features associated with the various H-SIRS forms and the identification of mutations in H-SIRS-linked genes by genetic testing. Diet therapy, insulin sensitization, exogenous insulin therapy, and leptin replacement therapy have widely been adopted to manage H-SIRS. The rarity of H-SIRS, its highly variable clinical presentation, refusal to be tested for genetic mutations by patients' family members who are not severely sick, unavailability of genetic testing, and testing expenses contribute to the delayed or underdiagnoses of H-SIRS. Early diagnosis facilitates early management of the condition, which results in improved glycemic control and delayed onset of diabetes and other complications related to severe insulin resistance. The use of updated genetic sequencing technologies is recommended, and long-term studies are required for genotype-phenotype differentiation and formulation of diagnostic and treatment protocols.
Collapse
|