1
|
Lu C, Jin A, Liu H, Gao C, Sun W, Zhang Y, Dai Q, Liu Y. Advancing tissue engineering through vascularized cell spheroids: building blocks of the future. Biomater Sci 2025; 13:1901-1922. [PMID: 40067332 DOI: 10.1039/d4bm01206b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Vascularization is a crucial aspect of biofabrication, as the development of vascular networks is essential for tissue survival and the optimization of cellular functions. Spheroids have emerged as versatile units for vascularization, demonstrating significant potential in angiogenesis and prevascularization for tissue engineering and regenerative medicine. However, a major challenge in creating customized vascularized spheroids is the construction of a biomimetic extracellular matrix (ECM) microenvironment. This process requires careful regulation of environmental factors, including the modulation of growth factors, the selection of culture media, and the co-culture of diverse cell types. Recent advancements in biofabrication have expanded the potential applications of vascularized spheroids. The integration of microfluidic technology with bioprinting offers promising solutions to existing challenges in regenerative medicine. Spheroids have been widely studied for their ability to promote vascularization in in vitro models. This review highlights the latest developments in vascularized biofabrication, and systematically explores strategies for constructing vascularized spheroids. We provide a comprehensive analysis of spheroid applications in specific tissues, including skin, liver, bone, cardiac, and tumor models. Finally, the review addresses the major challenges and future directions in the field.
Collapse
Affiliation(s)
- Chunxiang Lu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Aoxiang Jin
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Huazhen Liu
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Chuang Gao
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Wenbin Sun
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Yi Zhang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Qiqi Dai
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yuanyuan Liu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai, 200444, China
- Wenzhou Institute of Shanghai University, Wenzhou, 325000, China
| |
Collapse
|
2
|
Ionescu C, Oprea B, Ciobanu G, Georgescu M, Bică R, Mateescu GO, Huseynova F, Barragan-Montero V. The Angiogenic Balance and Its Implications in Cancer and Cardiovascular Diseases: An Overview. Medicina (B Aires) 2022; 58:medicina58070903. [PMID: 35888622 PMCID: PMC9316440 DOI: 10.3390/medicina58070903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis is the process of developing new blood vessels from pre-existing ones. This review summarizes the main features of physiological and pathological angiogenesis and those of angiogenesis activation and inhibition. In healthy adults, angiogenesis is absent apart from its involvement in female reproductive functions and tissue regeneration. Angiogenesis is a complex process regulated by the action of specific activators and inhibitors. In certain diseases, modulating the angiogenic balance can be a therapeutic route, either by inhibiting angiogenesis (for example in the case of tumor angiogenesis), or by trying to activate the process of new blood vessels formation, which is the goal in case of cardiac or peripheral ischemia.
Collapse
Affiliation(s)
- Cătălina Ionescu
- Department of Chemistry, Faculty of Sciences, University of Craiova, 107i Calea București, 200144 Craiova, Romania;
- Correspondence: (C.I.); (B.O.)
| | - Bogdan Oprea
- Histology Department, University of Medicine and Pharmacy, 2-4 Petru Rares, 200349 Craiova, Romania;
- Correspondence: (C.I.); (B.O.)
| | - Georgeta Ciobanu
- Department of Chemistry, Faculty of Sciences, University of Craiova, 107i Calea București, 200144 Craiova, Romania;
| | - Milena Georgescu
- Clinic for Plastic Surgery and Burns, County Emergency Hospital Craiova, 200642 Craiova, Romania;
| | - Ramona Bică
- General Hospital—“Victor Babes”, 281 Mihai Bravu St., Sector III, 030303 Bucharest, Romania;
| | - Garofiţa-Olivia Mateescu
- Histology Department, University of Medicine and Pharmacy, 2-4 Petru Rares, 200349 Craiova, Romania;
| | - Fidan Huseynova
- LBN, University of Montpellier, 34193 Montpellier, France; (F.H.); (V.B.-M.)
- Institute of Molecular Biology and Biotechnologies, Azerbaïjan National Academy of Sciences (ANAS), AZ1073 Baku, Azerbaijan
- Department of Histology, Cytology and Embryology, Azerbaijan Medical University, AZ1078 Baku, Azerbaijan
| | | |
Collapse
|
3
|
Xiao Y, Zhang Y, Li Y, Peng N, Liu Q, Qiu D, Cho J, Borlongan CV, Yu G. Exosomes Derived From Mesenchymal Stem Cells Pretreated With Ischemic Rat Heart Extracts Promote Angiogenesis via the Delivery of DMBT1. Cell Transplant 2022; 31:9636897221102898. [PMID: 35726847 PMCID: PMC9218457 DOI: 10.1177/09636897221102898] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 12/02/2022] Open
Abstract
Mesenchymal stem cell-derived exosomes (MSC-Exos) have been shown to promote angiogenesis. Treating MSCs with ischemic rat brain extracts was sufficient to augment their benefits in stroke. However, no similar analyses of ischemic heart extracts have been performed to date. We aim to determine whether MSC-Exos derived from MSCs pretreated with ischemic rat heart extract were able to promote angiogenesis and to clarify underlying mechanisms. ELISA (enzyme-linked immunosorbent assay) of heart extracts revealed a significant increase of vascular endothelial growth factor (VEGF) at 24 h post-MI (myocardial infarction) modeling, and time-dependent decreases in hypoxia inducible factor-1α (HIF-1α). MTT and wound healing assays revealed human umbilical vein endothelial cells (HUVECs) migration and proliferation increased following MSCE-Exo treatment (exosomes derived from MSC pretreated with ischemic heart extracts of 24 h post-MI) relative to MSCN-Exo treatment (exosomes derived from MSC pretreated with normal heart extracts). Proteomic analyses of MSCE-Exo and MSCN-Exo were conducted to screen for cargo proteins promoting angiogenesis. Result revealed several angiogenesis-related proteins were upregulated in MSCE-Exo, including DMBT1 (deleted in malignant brain tumors 1). When DMBT1 was silenced in MSCs, HUVECs with MSCDMBT1 RNAi-Exo treatment exhibited impaired proliferative and migratory activity and reductions of DMBT1, p-Akt, β-catenin, and VEGF. To explore how ischemic heart extracts took effects, ELISA was conducted showing a significant increase of IL-22 at 24 h post-MI modeling. P-STAT3, IL22RA1, DMBT1, and VEGF proteins were increased in MSCE relative to MSCN, and VEGF and DMBT1 were increased in MSCE-Exos. Together, these suggest that IL-22 upregulation in ischemic heart extracts can increase DMBT1 in MSCs. Exosomes derived from those MSCs deliver DMBT1 to HUVECs, thereby enhancing their migratory and proliferative activity.
Collapse
Affiliation(s)
- Yi Xiao
- Division of Cardiovascular, Xiangya Hospital, Central South University, Changsha, China
| | - Ye Zhang
- Division of Cardiovascular, Xiangya Hospital, Central South University, Changsha, China
| | - Yuzhang Li
- Division of Cardiovascular, Xiangya Hospital, Central South University, Changsha, China
| | - Nanyin Peng
- Division of Cardiovascular, Xiangya Hospital, Central South University, Changsha, China
| | - Qin Liu
- Division of Cardiovascular, Xiangya Hospital, Central South University, Changsha, China
| | - Danyang Qiu
- Division of Cardiovascular, Xiangya Hospital, Central South University, Changsha, China
| | - Justin Cho
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Cesario V. Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Guolong Yu
- Division of Cardiovascular, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|