1
|
Šoša I, Labinac L, Perković M. Metabolic Dysfunction-Associated Steatotic Liver Disease Induced by Microplastics: An Endpoint in the Liver-Eye Axis. Int J Mol Sci 2025; 26:2837. [PMID: 40243419 PMCID: PMC11989125 DOI: 10.3390/ijms26072837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/11/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
There is a significant, rather than just anecdotal, connection between the liver and the eyes. This connection is evident in noticeable cases such as jaundice, where the sclera has a yellow tint. But this can be seen through even more subtle indicators, such as molecules known as hepatokines. This relationship is not merely anecdotal; in some studies, it is referred to as the "liver-eye axis". Ubiquitous environmental contaminants, such as microplastics (MPs), can enter the bloodstream and human body through the conjunctival sac, nasolacrimal duct, and upper respiratory tract mucosa. Once absorbed, these substances can accumulate in various organs and cause harm. Toxic substances from the surface of the eye can lead to local oxidative damage by inducing apoptosis in corneal and conjunctival cells, and irregularly shaped microparticles can exacerbate this effect. Even other toxicants from the ocular surface may be absorbed into the bloodstream and distributed throughout the body. Environmental toxicology presents a challenge because many pollutants can enter the body through the same ocular route as that used by certain medications. Previous research has indicated that the accumulation of MPs may play a major role in the development of chronic liver disease in humans. It is crucial to investigate whether the buildup of MPs in the liver is a potential cause of fibrosis, or simply a consequence of conditions such as cirrhosis and portal hypertension.
Collapse
Affiliation(s)
- Ivan Šoša
- Department of Anatomy, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Loredana Labinac
- Department of Pathology and Cytology, General Hospital Pula, 52100 Pula, Croatia; (L.L.); (M.P.)
| | - Manuela Perković
- Department of Pathology and Cytology, General Hospital Pula, 52100 Pula, Croatia; (L.L.); (M.P.)
| |
Collapse
|
2
|
Šoša I, Perković M, Baniček Šoša I, Grubešić P, Linšak DT, Strenja I. Absorption of Toxicants from the Ocular Surface: Potential Applications in Toxicology. Biomedicines 2025; 13:645. [PMID: 40149621 PMCID: PMC11940235 DOI: 10.3390/biomedicines13030645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/17/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
In relation to the eye, the body can absorb substances from the ocular surface fluid (OSF) in a few ways: directly through the conjunctival sac, through the nasal mucosa as the fluid drains into the nose, or through ingestion. Regardless of the absorption method, fluid from the conjunctival sac should be used as a toxicological matrix, even though only small quantities are needed. Contemporary analytical techniques make it a suitable matrix for toxicological research. Analyzing small quantities of the matrix and nano-quantities of the analyte requires high-cost, sophisticated tools, which is particularly relevant in the high-throughput environment of new drug or cosmetics testing. Environmental toxicology also presents a challenge, as many pollutants can enter the system using the same ocular surface route. A review of the existing literature was conducted to assess potential applications in clinical and forensic toxicology related to the absorption of toxicants from the ocular surface. The selection of the studies used in this review aimed to identify new, more efficient, and cost-effective analytical technology and diagnostic methods.
Collapse
Affiliation(s)
- Ivan Šoša
- Department of Anatomy, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Manuela Perković
- Department of Pathology and Cytology, Pula General Hospital, 52100 Pula, Croatia;
| | - Ivanka Baniček Šoša
- Clinical Hospital Centre Rijeka, University Department of Physical and Rehabilitation Medicine, Krešimirova 42, 51000 Rijeka, Croatia;
| | - Petra Grubešić
- Department of Ophthalmology, Clinical Hospital Center Rijeka, Krešmirova 42, 51000 Rijeka, Croatia;
| | - Dijana Tomić Linšak
- Department for Health Ecology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
- Department for Scientific and Teaching Activity, Teaching Institute of Public Health County of Primorje-Gorski Kotar, Krešimirova 52a, 51000 Rijeka, Croatia
| | - Ines Strenja
- Department of Neurology University Hospital Centre Rijeka, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| |
Collapse
|
3
|
Abidin BM, Rios FJ, Montezano AC, Touyz RM. Transient receptor potential melastatin 7 cation channel, magnesium and cell metabolism in vascular health and disease. Acta Physiol (Oxf) 2025; 241:e14282. [PMID: 39801180 DOI: 10.1111/apha.14282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 12/07/2024] [Accepted: 01/01/2025] [Indexed: 01/30/2025]
Abstract
Preserving the balance of metabolic processes in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), is crucial for optimal vascular function and integrity. ECs are metabolically active and depend on aerobic glycolysis to efficiently produce energy for their essential functions, which include regulating vascular tone. Impaired EC metabolism is linked to endothelial damage, increased permeability and inflammation. Metabolic alterations in VSMCs also contribute to vascular dysfunction in atherosclerosis and hypertension. Magnesium (Mg2+) is the second most abundant intracellular divalent cation and influences molecular processes that regulate vascular function, including vasodilation, vasoconstriction, and release of vasoactive substances. Mg2+ is critically involved in maintaining cellular homeostasis and metabolism since it is an essential cofactor for ATP, nucleic acids and hundreds of enzymes involved in metabolic processes. Low Mg2+ levels have been linked to endothelial dysfunction, increased vascular tone, vascular inflammation and arterial remodeling. Growing evidence indicates an important role for the transient receptor potential melastatin-subfamily member 7 (TRPM7) cation channel in the regulation of Mg2+ homeostasis in EC and VSMCs. In the vasculature, TRPM7 deficiency leads to impaired endothelial function, increased vascular contraction, phenotypic switching of VSMCs, inflammation and fibrosis, processes that characterize the vascular phenotype in hypertension. Here we provide a comprehensive overview on TRPM7/Mg2+ in the regulation of vascular function and how it influences EC and VSMC metabolism such as glucose and energy homeostasis, redox regulation, phosphoinositide signaling, and mineral metabolism. The putative role of TRPM7/Mg2+ and altered cellular metabolism in vascular dysfunction and hypertension is also discussed.
Collapse
Affiliation(s)
- Belma Melda Abidin
- Cardiovascular Health Across the Life Span, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Francisco J Rios
- Cardiovascular Health Across the Life Span, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Augusto C Montezano
- Cardiovascular Health Across the Life Span, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Rhian M Touyz
- Cardiovascular Health Across the Life Span, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Family Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Chen C, Zhong W, Zheng H, Dai G, Zhao W, Wang Y, Dong Q, Shen B. The role of uromodulin in cardiovascular disease: a review. Front Cardiovasc Med 2024; 11:1417593. [PMID: 39049957 PMCID: PMC11267628 DOI: 10.3389/fcvm.2024.1417593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Uromodulin, also referred to as Tamm Horsfall protein (THP), is a renal protein exclusively synthesized by the kidneys and represents the predominant urinary protein under normal physiological conditions. It assumes a pivotal role within the renal system, contributing not only to ion transport and immune modulation but also serving as a critical factor in the prevention of urinary tract infections and kidney stone formation. Emerging evidence indicates that uromodulin may serve as a potential biomarker extending beyond renal function. Recent clinical investigations and Mendelian randomization studies have unveiled a discernible association between urinary regulatory protein levels and cardiovascular events and mortality. This review primarily delineates the intricate relationship between uromodulin and cardiovascular disease, elucidates its predictive utility as a novel biomarker for cardiovascular events, and delves into its involvement in various physiological and pathophysiological facets of the cardiovascular system, incorporating recent advancements in corresponding genetics.
Collapse
Affiliation(s)
- Chengqian Chen
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Wentao Zhong
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Hao Zheng
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Gaoying Dai
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Wei Zhao
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Yushi Wang
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Qi Dong
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Botao Shen
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Xin Y, Zhang Z, Lv S, Xu S, Liu A, Li H, Li P, Han H, Liu Y. Elucidating VSMC phenotypic transition mechanisms to bridge insights into cardiovascular disease implications. Front Cardiovasc Med 2024; 11:1400780. [PMID: 38803664 PMCID: PMC11128571 DOI: 10.3389/fcvm.2024.1400780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide, despite advances in understanding cardiovascular health. Significant barriers still exist in effectively preventing and managing these diseases. Vascular smooth muscle cells (VSMCs) are crucial for maintaining vascular integrity and can switch between contractile and synthetic functions in response to stimuli such as hypoxia and inflammation. These transformations play a pivotal role in the progression of cardiovascular diseases, facilitating vascular modifications and disease advancement. This article synthesizes the current understanding of the mechanisms and signaling pathways regulating VSMC phenotypic transitions, highlighting their potential as therapeutic targets in cardiovascular disease interventions.
Collapse
Affiliation(s)
- Yuning Xin
- Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zipei Zhang
- Traditional Chinese Medicine, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Shan Lv
- Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Shan Xu
- Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Aidong Liu
- Traditional Chinese Medicine, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Hongyu Li
- Traditional Chinese Medicine, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Pengfei Li
- Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Huize Han
- Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yinghui Liu
- Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
6
|
Lee SE, Yoon HK, Kim DY, Jeong TS, Park YS. An Emerging Role of Micro- and Nanoplastics in Vascular Diseases. Life (Basel) 2024; 14:255. [PMID: 38398764 PMCID: PMC10890539 DOI: 10.3390/life14020255] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Vascular diseases are the leading causes of death worldwide, and they are attributable to multiple pathologies, such as atherosclerosis, diabetes, and chronic obstructive pulmonary disease. Exposure to various environmental contaminants is associated with the development of various diseases, including vascular diseases. Among environmental contaminants, micro- and nanoplastics have gained attention as global environmental risk factors that threaten human health. Recently, extensive research has been conducted on the effects of micro- and nanoplastics on various human diseases, including vascular diseases. In this review, we highlight the effects of micro- and nanoplastics on vascular diseases.
Collapse
Affiliation(s)
- Seung Eun Lee
- Department of Microbiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyun Kyung Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (H.K.Y.); (D.Y.K.); (T.S.J.)
| | - Do Yun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (H.K.Y.); (D.Y.K.); (T.S.J.)
| | - Taek Seung Jeong
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (H.K.Y.); (D.Y.K.); (T.S.J.)
| | - Yong Seek Park
- Department of Microbiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
7
|
Li J, Li C, Huang Z, Huang C, Liu J, Wu T, Xu S, Mai P, Geng D, Zhou S, Zhang K, Liu Z. Empagliflozin alleviates atherosclerotic calcification by inhibiting osteogenic differentiation of vascular smooth muscle cells. Front Pharmacol 2023; 14:1295463. [PMID: 38094889 PMCID: PMC10716287 DOI: 10.3389/fphar.2023.1295463] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/13/2023] [Indexed: 01/21/2025] Open
Abstract
SGLT-2 inhibitors, such as empagliflozin, have been shown to reduce the occurrence of cardiovascular events and delay the progression of atherosclerosis. However, its role in atherosclerotic calcification remains unclear. In this research, ApoE-/- mice were fed with western diet and empagliflozin was added to the drinking water for 24 weeks. Empagliflozin treatment significantly alleviated arterial calcification assessed by alizarin red and von kossa staining in aortic roots and reduced the lipid levels, while had little effect on body weight and blood glucose levels in ApoE-/- mice. In vitro studies, empagliflozin significantly inhibits calcification of primary vascular smooth muscle cells (VSMCs) and aortic rings induced by osteogenic media (OM) or inorganic phosphorus (Pi). RNA sequencing of VSMCs cultured in OM with or without empagliflozin showed that empagliflozin negatively regulated the osteogenic differentiation of VSMCs. And further studies confirmed that empagliflozin significantly inhibited osteogenic differentiation of VSMCs via qRT-PCR. Our study demonstrates that empagliflozin alleviates atherosclerotic calcification by inhibiting osteogenic differentiation of VSMCs, which addressed a critical need for the discovery of a drug-based therapeutic approach in the treatment of atherosclerotic calcification.
Collapse
Affiliation(s)
- Junping Li
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Changping Li
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhaoqi Huang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chunling Huang
- Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Juanzhang Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tao Wu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shuwan Xu
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Peibiao Mai
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dengfeng Geng
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shuxian Zhou
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Kun Zhang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhaoyu Liu
- Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|