1
|
Pantazopoulos D, Gouveri E, Papazoglou D, Papanas N. The Trigeminal Nerve in Diabetes Mellitus: A Brief Narrative Review. Exp Clin Endocrinol Diabetes 2025. [PMID: 40049604 DOI: 10.1055/a-2552-8692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
This brief narrative review discusses the clinical manifestations, diagnosis, and management of trigeminal nerve-related conditions, such as neuropathy and neuralgia, in patients with diabetes mellitus. Although these conditions are not very common, there is a solid connection between them in diabetes patients. Symptoms typically include facial pain, sensory disturbances, and muscle weakness for neuropathy and severe, stabbing pain for neuralgia. Diagnosis is based on characteristic clinical manifestations, along with laboratory investigation and magnetic resonance imaging to exclude other potential causes, such as tumours, multiple sclerosis, or vascular compression. Treatment focuses on strict glycaemic control, modification of vascular risk factors, pharmacological agents (carbamazepine and oxcarbazepine), and neurostimulation to improve symptoms and quality of life.
Collapse
Affiliation(s)
- Dimitrios Pantazopoulos
- Diabetes Centre-Diabetic Foot Clinic, Second Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, 68100, Alexandroupolis, Greece
| | - Evanthia Gouveri
- Diabetes Centre-Diabetic Foot Clinic, Second Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, 68100, Alexandroupolis, Greece
| | - Dimitrios Papazoglou
- Diabetes Centre-Diabetic Foot Clinic, Second Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, 68100, Alexandroupolis, Greece
| | - Nikolaos Papanas
- Diabetes Centre-Diabetic Foot Clinic, Second Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, 68100, Alexandroupolis, Greece
| |
Collapse
|
2
|
Kryszan K, Wylęgała A, Kijonka M, Potrawa P, Walasz M, Wylęgała E, Orzechowska-Wylęgała B. Artificial-Intelligence-Enhanced Analysis of In Vivo Confocal Microscopy in Corneal Diseases: A Review. Diagnostics (Basel) 2024; 14:694. [PMID: 38611606 PMCID: PMC11011861 DOI: 10.3390/diagnostics14070694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Artificial intelligence (AI) has seen significant progress in medical diagnostics, particularly in image and video analysis. This review focuses on the application of AI in analyzing in vivo confocal microscopy (IVCM) images for corneal diseases. The cornea, as an exposed and delicate part of the body, necessitates the precise diagnoses of various conditions. Convolutional neural networks (CNNs), a key component of deep learning, are a powerful tool for image data analysis. This review highlights AI applications in diagnosing keratitis, dry eye disease, and diabetic corneal neuropathy. It discusses the potential of AI in detecting infectious agents, analyzing corneal nerve morphology, and identifying the subtle changes in nerve fiber characteristics in diabetic corneal neuropathy. However, challenges still remain, including limited datasets, overfitting, low-quality images, and unrepresentative training datasets. This review explores augmentation techniques and the importance of feature engineering to address these challenges. Despite the progress made, challenges are still present, such as the "black-box" nature of AI models and the need for explainable AI (XAI). Expanding datasets, fostering collaborative efforts, and developing user-friendly AI tools are crucial for enhancing the acceptance and integration of AI into clinical practice.
Collapse
Affiliation(s)
- Katarzyna Kryszan
- Chair and Clinical Department of Ophthalmology, School of Medicine in Zabrze, Medical University of Silesia in Katowice, District Railway Hospital, 40-760 Katowice, Poland; (A.W.); (M.K.); (E.W.)
- Department of Ophthalmology, District Railway Hospital in Katowice, 40-760 Katowice, Poland; (P.P.); (M.W.)
| | - Adam Wylęgała
- Chair and Clinical Department of Ophthalmology, School of Medicine in Zabrze, Medical University of Silesia in Katowice, District Railway Hospital, 40-760 Katowice, Poland; (A.W.); (M.K.); (E.W.)
- Health Promotion and Obesity Management, Pathophysiology Department, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
| | - Magdalena Kijonka
- Chair and Clinical Department of Ophthalmology, School of Medicine in Zabrze, Medical University of Silesia in Katowice, District Railway Hospital, 40-760 Katowice, Poland; (A.W.); (M.K.); (E.W.)
- Department of Ophthalmology, District Railway Hospital in Katowice, 40-760 Katowice, Poland; (P.P.); (M.W.)
| | - Patrycja Potrawa
- Department of Ophthalmology, District Railway Hospital in Katowice, 40-760 Katowice, Poland; (P.P.); (M.W.)
| | - Mateusz Walasz
- Department of Ophthalmology, District Railway Hospital in Katowice, 40-760 Katowice, Poland; (P.P.); (M.W.)
| | - Edward Wylęgała
- Chair and Clinical Department of Ophthalmology, School of Medicine in Zabrze, Medical University of Silesia in Katowice, District Railway Hospital, 40-760 Katowice, Poland; (A.W.); (M.K.); (E.W.)
- Department of Ophthalmology, District Railway Hospital in Katowice, 40-760 Katowice, Poland; (P.P.); (M.W.)
| | - Bogusława Orzechowska-Wylęgała
- Department of Pediatric Otolaryngology, Head and Neck Surgery, Chair of Pediatric Surgery, Medical University of Silesia, 40-760 Katowice, Poland;
| |
Collapse
|
3
|
Chiang JCB, Tran V, Wolffsohn JS. The impact of dry eye disease on corneal nerve parameters: A systematic review and meta-analysis. Ophthalmic Physiol Opt 2023; 43:1079-1091. [PMID: 37357424 DOI: 10.1111/opo.13186] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/19/2023] [Accepted: 06/05/2023] [Indexed: 06/27/2023]
Abstract
PURPOSE Dry eye disease (DED) is a growing global health problem with a significant impact on the quality of life of patients. While neurosensory abnormalities have been recognised as a contributor to DED pathophysiology, the potential role of in vivo corneal confocal microscopy in detecting nerve loss or damage remains unclear. This systematic review with meta-analysis (PROSPERO registered CRD42022381861) investigated whether DED has an impact on sub-basal corneal nerve parameters. METHODS PubMed, Embase and Web of Science Core Collection databases were searched from inception to 9 December 2022. Studies using laser scanning confocal microscopy to compare corneal nerve parameters of DED with healthy eyes were included. Study selection process and data extraction were performed by two independent members of the review team. RESULTS Twenty-two studies with 916 participants with DED and 491 healthy controls were included, with 21 of these studies included in subsequent meta-analyses. There was a decrease in total corneal nerve length (-3.85 mm/mm2 ; 95% CI -5.16, -2.55), corneal main nerve trunk density (-4.81 number/mm2 ; 95% CI -7.94, -1.68) and corneal nerve branch density (-15.52 number/mm2 ; 95% CI -27.20, -3.84) in DED eyes compared with healthy eyes, with subgroup analysis demonstrating that these differences were more evident in studies using NeuronJ software, a semi-automated procedure. While this review found evidence of loss of corneal nerve parameters in eyes with DED compared with healthy controls, particularly with the use of a semi-automated image analysis method, it is evident that there is substantial heterogeneity between studies in terms of corneal nerve imaging methodology. CONCLUSIONS Standardisation is required in terms of terminology and analysis, with more research needed to potentially improve the clinical applicability and practicality of corneal nerve imaging. Further investigation is also required to confirm the diagnostic accuracy of this imaging modality and its potential for monitoring DED treatment efficacy.
Collapse
Affiliation(s)
- Jeremy Chung Bo Chiang
- School of Optometry, College of Health and Life Sciences, Aston University, Birmingham, UK
- School of Optometry and Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Vincent Tran
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - James S Wolffsohn
- School of Optometry, College of Health and Life Sciences, Aston University, Birmingham, UK
| |
Collapse
|