1
|
Guo S, Zhang L, Ren J, Lu Z, Ma X, Liu X, Jin H, Li J. The roles of enhancer, especially super-enhancer-driven genes in tumor metabolism and immunity. Int J Biol Macromol 2025; 308:142414. [PMID: 40132720 DOI: 10.1016/j.ijbiomac.2025.142414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025]
Abstract
Abnormal metabolism is a characteristic of malignant tumors. Numerous factors play roles in the regulation of tumor metabolism. As epigenetic regulators, enhancers, especially the super-enhancers (SEs), serve as platforms for transcription factors that regulate the expression of metabolism-related enzymes or transporters at the gene level. In this study, we review the effects of enhancer/ SE-driven genes on tumor metabolism and immunity. Enhancers/SEs play regulatory roles in glucose metabolism (glycolysis, gluconeogenesis, tricarboxylic acid (TCA) cycle, pyruvate, and pentose phosphate pathway, lipid metabolism (cholesterol, fatty acid, phosphatide, and sphingolipid), and amino acid metabolism (glutamine, tryptophan, arginine, and cystine). By regulating tumor metabolism, enhancers and SEs can reprogram tumor microenvironment, especially the status of various immune cells. Therefore, interfering enhancers/SEs that regulate the tumor metabolism is likely to enhance the effectiveness of immunotherapy.
Collapse
Affiliation(s)
- Songyue Guo
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China; Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Lu Zhang
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China; Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Jiao Ren
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China; Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Zhong Lu
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Xiaolin Ma
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Xinling Liu
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China.
| | - Hongchuan Jin
- Department of Medical Oncology, Cancer Center of Zhejiang University, Sir Run Run Shaw hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China.
| | - Jiaqiu Li
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China; Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China.
| |
Collapse
|
2
|
Zhu M, Hu Y, Gu Y, Lin X, Jiang X, Gong C, Fang Z. Role of amino acid metabolism in tumor immune microenvironment of colorectal cancer. Am J Cancer Res 2025; 15:233-247. [PMID: 39949925 PMCID: PMC11815375 DOI: 10.62347/zsoo2247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
This review investigates the role of amino acid metabolism in the tumor microenvironment of colorectal cancer (CRC) and explores potential targeted therapeutic strategies. The paper synthesized current research on amino acid metabolism in the colorectal cancer tumor microenvironment, focusing on amino acids such as tryptophan, methionine, glutamine, and arginine. It examined their impact on tumor growth, immune evasion, and patient prognosis, as well as the metabolic reprogramming of tumor cells and complex tumor microenvironment interactions. Aberrant amino acid metabolism was a hallmark of colorectal cancer, influencing tumor proliferation, survival, and invasiveness. Key findings included: Tryptophan metabolism via the kynurenine and serotonin pathways significantly affected immune response and tumor progression in CRC. Methionine influenced T cell function and DNA methylation, playing a critical role in tumor development. Glutamine was extensively used by tumor cells for energy metabolism and supported immune cell function. Arginine metabolism impacted CD8+ T cell functionality and tumor growth. The review also discussed the dual roles of immune cells in the tumor microenvironment and the potential of targeting amino acid metabolic pathways for CRC treatment. In conclusion, amino acid metabolism significantly impacts the colorectal cancer tumor microenvironment and immunity. Understanding these metabolic pathways provides valuable insights into CRC pathogenesis and identifies potential therapeutic targets. Future research should focus on developing treatments that disrupt these metabolic processes to improve patient outcomes in CRC.
Collapse
Affiliation(s)
- Minjing Zhu
- Clinical Laboratory, Sanmen People’s HospitalSanmen 317100, Zhejiang, China
| | - Yanyan Hu
- Clinical Laboratory, Sanmen People’s HospitalSanmen 317100, Zhejiang, China
| | - Yangjia Gu
- Chinese Medicine, Changchun University of Science and TechnologyChangchun 130600, Jilin, China
| | - Xuedan Lin
- Clinical Laboratory, Sanmen People’s HospitalSanmen 317100, Zhejiang, China
| | - Xiang Jiang
- Department of Gastroenterology, Sanmen People’s HospitalSanmen 317100, Zhejiang, China
| | - Chaoju Gong
- Central Laboratory, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical UniversityXuzhou 221000, Jiangsu, China
| | - Zejun Fang
- Central Laboratory, Sanmen People’s HospitalSanmen 317100, Zhejiang, China
| |
Collapse
|
3
|
Abduljabbar MH, Althobaiti YS, Alnemari RM, Almutairi FM, Aldhafeeri MM, Serag A, Almalki AH. GC-MS and multivariate analysis reveal partial serum metabolome restoration by bevacizumab in a colon cancer rat model: An untargeted metabolomics investigation. J Pharm Biomed Anal 2024; 253:116562. [PMID: 39520809 DOI: 10.1016/j.jpba.2024.116562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Bevacizumab is an anti-angiogenic therapeutic agent that targets vascular endothelial growth factor (VEGF) and has been approved for the treatment of several types of cancer, including colon cancer. Herein, a GC-MS based metabolomics approach was employed to investigate the impact of bevacizumab on the serum metabolome of colon cancer rats. Multivariate chemometric analysis models such as PCA and PLS-DA showed a clear separation between the control, cancer and bevacizumab-treated groups, suggesting that bevacizumab administration induced significant metabolic alterations. Furthermore, pairwise comparisons between the studied groups using the OPLS-DA model in addition to univariate analysis identified several discriminatory metabolites belonged to various chemical classes including amino acids, organic acids and fatty acids that were perturbed between the studied groups. Interestingly, bevacizumab treatment was able to partially restore some of the cancer-induced metabolic disturbances, indicating its potential therapeutic efficacy via improving the tumor vasculature and nutrient delivery. Besides, pathway analysis of the differential metabolites identified key metabolic pathways affected by bevacizumab, which included valine, leucine and isoleucine metabolism, pyruvate metabolism and butanoate metabolism. However, little effects were observed on lipid metabolites such as palmitic acid and stearic acid and consequently their related metabolic pathways such as fatty acid biosynthesis metabolism suggesting that bevacizumab has more prominent effect on energy and amino acid metabolisms as compared to fatty acid metabolism in colon cancer rats. Overall, our study provided novel insights into the metabolic mechanisms underlying the therapeutic effects of bevacizumab in colon cancer rats via the use of a comprehensive GC-MS metabolomics approach.
Collapse
Affiliation(s)
- Maram H Abduljabbar
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Yusuf S Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; Addiction and Neuroscience Research Unit, Health Science Campus, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Reem M Alnemari
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Farooq M Almutairi
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, University of Hafr AlBatin, Hafr AlBatin 39524, Saudi Arabia
| | - Muneef M Aldhafeeri
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, University of Hafr AlBatin, Hafr AlBatin 39524, Saudi Arabia
| | - Ahmed Serag
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo 11751, Egypt.
| | - Atiah H Almalki
- Addiction and Neuroscience Research Unit, Health Science Campus, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| |
Collapse
|
4
|
Ciocan RA, Ciocan A, Mihăileanu FV, Ursu CP, Ursu Ș, Bodea C, Cordoș AA, Chiș BA, Al Hajjar N, Dîrzu N, Dîrzu DS. Metabolic Signatures: Pioneering the Frontier of Rectal Cancer Diagnosis and Response to Neoadjuvant Treatment with Biomarkers-A Systematic Review. Int J Mol Sci 2024; 25:2381. [PMID: 38397058 PMCID: PMC10889270 DOI: 10.3390/ijms25042381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most aggressive, heterogenous, and fatal types of human cancer for which screening, and more effective therapeutic drugs are urgently needed. Early-stage detection and treatment greatly improve the 5-year survival rate. In the era of targeted therapies for all types of cancer, a complete metabolomic profile is mandatory before neoadjuvant therapy to assign the correct drugs and check the response to the treatment given. The aim of this study is to discover specific metabolic biomarkers or a sequence of metabolomic indicators that possess precise diagnostic capabilities in predicting the efficacy of neoadjuvant therapy. After searching the keywords, a total of 108 articles were identified during a timeframe of 10 years (2013-2023). Within this set, one article was excluded due to the use of non-English language. Six scientific papers were qualified for this investigation after eliminating all duplicates, publications not referring to the subject matter, open access restriction papers, and those not applicable to humans. Biomolecular analysis found a correlation between metabolomic analysis of colorectal cancer samples and poor progression-free survival rates. Biomarkers are instrumental in predicting a patient's response to specific treatments, guiding the selection of targeted therapies, and indicating resistance to certain drugs.
Collapse
Affiliation(s)
- Răzvan Alexandru Ciocan
- Department of Surgery-Practical Abilities, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania;
| | - Andra Ciocan
- Department of Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania; (F.V.M.); (C.-P.U.); (Ș.U.); (C.B.); (N.A.H.)
- “Prof. Dr. Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Florin Vasile Mihăileanu
- Department of Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania; (F.V.M.); (C.-P.U.); (Ș.U.); (C.B.); (N.A.H.)
| | - Cristina-Paula Ursu
- Department of Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania; (F.V.M.); (C.-P.U.); (Ș.U.); (C.B.); (N.A.H.)
| | - Ștefan Ursu
- Department of Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania; (F.V.M.); (C.-P.U.); (Ș.U.); (C.B.); (N.A.H.)
| | - Cătălin Bodea
- Department of Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania; (F.V.M.); (C.-P.U.); (Ș.U.); (C.B.); (N.A.H.)
| | | | - Bogdan Augustin Chiș
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania;
| | - Nadim Al Hajjar
- Department of Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania; (F.V.M.); (C.-P.U.); (Ș.U.); (C.B.); (N.A.H.)
- “Prof. Dr. Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Noemi Dîrzu
- Clinical Laboratory Department, Transilvania Hospital, 400486 Cluj-Napoca, Romania
| | - Dan-Sebastian Dîrzu
- Emergency County Hospital Cluj, 400006 Cluj-Napoca, Romania;
- STAR—UBB Institute, Babeș Bolyai University, 400084 Cluj-Napoca, Romania
| |
Collapse
|