1
|
Jiang Y, Wei Y, Liu Y, Yang J, Zhou K, Yang H. Bone mineral density surrounding the screw thread predicts the risk of pedicle screw loosening. J Biomech 2025; 181:112542. [PMID: 39892282 DOI: 10.1016/j.jbiomech.2025.112542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/08/2025] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND Screw loosening remains a serious complication for patients undergoing pedicle screw fixation surgeries. An accurate risk prediction is significant for prevention of screw loosening through preoperative planning. In this study, we proposed a novel index, namely the bone mineral density surrounding the screw thread (thread BMD), and tested its predictability in screw loosening. METHODS 86 screws (18 loosening and 68 non-loosening) from L3-L5 of 20 patients who experienced pedicle screw loosening were analyzed. The preoperative and postoperative quantitative CT scans of the same vertebra were spatially registered and a helix-based approach was developed to extract the thread BMD. BMDs of the vertebral body, the pedicle and the screw trajectory were also measured from the preoperative CT scans. Finite element analysis was conducted to determine pullout strength and tissue failure around the screw. Receiver operating characteristic (ROC) curve analysis was used to assess the performances of all BMD indices and pullout strength in predicting screw loosening. Linear regression was used to examine correlations between different BMD indices and screw pullout strength. RESULTS The thread BMD had the greatest value of area under the curve (AUC = 0.73, p = 0.004) compared to vertebral BMD (AUC = 0.51, p = 0.923), pedicle BMD (AUC = 0.56, p = 0.474) and trajectory BMD (AUC = 0.67, p = 0.020). Also, the thread BMD showed a stronger correlation with the pullout strength (r = 0.83, p < 0.001) than vertebral BMD (r = 0.59, p < 0.001), pedicle BMD (r = 0.65, p < 0.001) and trajectory BMD (r = 0.60, p < 0.001). CONCLUSIONS We developed a novel approach to measure a newly-defined thread BMD, which indicates superior capacities over other BMD indices in predicting pedicle screw loosening.
Collapse
Affiliation(s)
- Yize Jiang
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Yi Wei
- Department of Spinal Surgery, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Yuxuan Liu
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Jiaxu Yang
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Kexin Zhou
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Haisheng Yang
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China.
| |
Collapse
|
2
|
Karavasili C, Young T, Francis J, Blanco J, Mancini N, Chang C, Bernstock JD, Connolly ID, Shankar GM, Traverso G. Local drug delivery challenges and innovations in spinal neurosurgery. J Control Release 2024; 376:1225-1250. [PMID: 39505215 DOI: 10.1016/j.jconrel.2024.10.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
The development of novel therapeutics in the field of spinal neurosurgery faces a litany of translational challenges. Achieving precise drug targeting within the confined spaces associated with the spinal cord, canal and vertebra requires the development of next generation delivery systems and devices. These must be capable of overcoming inherent barriers related to drug diffusion, whilst concurrently ensuring optimal drug distribution and retention. In this review, we provide an overview of the most recent advances in the therapeutic management of diseases and disorders affecting the spine, including systems and devices capable of releasing small molecules and biopharmaceuticals that help eliminate pain and restore the mechanical function and stability of the spine. We highlight material-based approaches and minimally invasive techniques that can be employed to provide control over drug release kinetics and improve retention. We also seek to explore how the newest advancements in nanotechnology, biomaterials, additive manufacturing technologies and imaging modalities can be employed in this translational pursuit. Finally, we discuss the landscape of clinical trials and recently approved products aimed at overcoming the complexities associated with drug delivery to the spine.
Collapse
Affiliation(s)
- Christina Karavasili
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Thomas Young
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Joshua Francis
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Julianna Blanco
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Nicholas Mancini
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Charmaine Chang
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Joshua D Bernstock
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ian D Connolly
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ganesh M Shankar
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Giovanni Traverso
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States; Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
3
|
Kuris EO, Osorio C, Anderson GM, Younghein JA, McDonald CL, Daniels AH. Utilization of Antibiotic Bone Cement in Spine Surgery: Pearls, Techniques, and Case Review. Orthop Rev (Pavia) 2023; 15:90618. [PMID: 38116585 PMCID: PMC10727979 DOI: 10.52965/001c.90618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/11/2023] [Indexed: 12/21/2023] Open
Abstract
Vertebral osteomyelitis (VO) encompasses a spectrum of spinal infections ranging from isolated mild vertebral osteomyelitis to severe diffuse infection with associated epidural abscess and fracture. Although patients can often be treated with an initial course of intravenous antibiotics, surgery is sometimes required in patients with sepsis, spinal instability, neurological compromise, or failed medical treatment. Antibiotic bone cement (ABC) has been widely used in orthopedic extremity surgery for more than 150 years, both for prophylaxis and treatment of bacterial infection. However, relatively little literature exists regarding its utilization in spine surgery. This article describes ABC utilization in orthopedic surgery and explains the technique of ABC utilization in spine surgery. Surgeons can choose from multiple premixed ABCs with variable viscosities, setting times, and antibiotics or can mix in antibiotics to bone cements themselves. ABC can be used to fill large defects in the vertebral body or disc space or in some cases to coat instrumentation. Surgeons should be wary of complications such as ABC extravasation as well as an increased difficulty with revision. With a thorough understanding of the properties of the cement and the methods of delivery, ABC is a powerful adjunct in the treatment of spinal infections.
Collapse
Affiliation(s)
- Eren O Kuris
- Orthopedic Surgery Warren Alpert School of Medicine at Brown University
| | - Camilo Osorio
- Orthopedic Surgery Warren Alpert School of Medicine at Brown University
| | | | | | | | - Alan H Daniels
- Orthopedic Surgery Warren Alpert School of Medicine at Brown University
| |
Collapse
|
4
|
Antibiotic Cement Utilization for the Prophylaxis and Treatment of Infections in Spine Surgery: Basic Science Principles and Rationale for Clinical Use. J Clin Med 2022; 11:jcm11123481. [PMID: 35743551 PMCID: PMC9224689 DOI: 10.3390/jcm11123481] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 01/27/2023] Open
Abstract
Antibiotic bone cement (ABC) is an effective tool for the prophylaxis and treatment of osteomyelitis due to the controlled, sustained release of local antibiotics. ABC has been proven to be effective in the orthopedic fields of arthroplasty and extremity trauma, but the adoption of ABC in spine surgery is limited. The characteristics of ABC make it an optimal solution for treating vertebral osteomyelitis (VO), a serious complication following spine surgery, typically caused by bacterial and sometimes fungal and parasitic pathogens. VO can be devastating, as infection can result in pathogenic biofilms on instrumentation that is dangerous to remove. New techniques, such as kyphoplasty and novel vertebroplasty methods, could amplify the potential of ABC in spine surgery. However, caution should be exercised when using ABC as there is some evidence of toxicity to patients and surgeons, antibiotic allergies, bone cement structural impairment, and possible development of antibiotic resistance. The purpose of this article is to describe the basic science of antibiotic cement utilization and review its usage in spine surgery.
Collapse
|