Oussou-Azo AF, Nakama T, Nakamura M, Futagami T, Vestergaard MCM. Antifungal Potential of Nanostructured Crystalline Copper and Its Oxide Forms.
NANOMATERIALS 2020;
10:nano10051003. [PMID:
32456302 PMCID:
PMC7279545 DOI:
10.3390/nano10051003]
[Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023]
Abstract
Copper has been used as an antimicrobial agent for over a century and is now being added to commercial fungicides. Nanomaterials have attracted much attention due to the special properties they have over their bulk form. We studied nanostructured copper (Cu-NPs), investigating the potential for improved antifungal properties derived from its special properties and studied any effect that the oxidation of copper (CuO-NPs) may have. We conducted this research against Colletotrichum gloeoesporioides, a devastating pathogen to plants/crops worldwide. Research on the effects of copper on this fungus are limited. Our studies showed that nanoforms of copper had significant antifungal activities, with Cu-NPs offering the most sustainable efficacy and was more effective than its oxidative form (CuO-NPs). Scanning Electron Microscopy (SEM) images of the treated pathogen show that the hyphae had a swollen appearance, lost their filamentous structure, and the mycelia had a powder-like structure, indicating the probable destruction of the hyphal tubular cell wall. X-ray Difractogram (XRD) outputs showed substantial changes in the physical characteristics of the Cu-NPs after interaction with the fungus. This is the first report to demonstrate chemo-physical changes in the metal compounds, opening new insights for further studies on the mechanism of copper’s antifungal properties.
Collapse