1
|
Lin TY, Mishra VK, Dubey R, Chaturvedi TP, Narayan SA, Fang HW, Tsai LW, Dubey NK. Transcriptomic analysis reveals distinct molecular signatures and regulatory networks of osteoarthritic chondrocytes versus mesenchymal stem cells during chondrogenesis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2025. [PMID: 40242907 DOI: 10.5507/bp.2025.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Recent regenerative studies imply conflicting results on knee osteoarthritic (OA) chondrocytes and mesenchymal stem cells (MSC)-mediated cartilage constructs in terms of compressive properties and tensile strength. This could be attributed to different gene expression patterns between MSC and OA chondrocytes during chondrogenic differentiation. Therefore, we analyzed differentially expressed genes (DEGs) between OA and MSC-derived chondrocytes using bioinformatics tools. METHODS We downloaded and analyzed the GSE19664 dataset from the Gene Expression Omnibus to identify DEGs. DAVID was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, while a protein-protein interaction network of DEGs was constructed through the Search Tool for the Retrieval of Interacting Genes (STRING) and identified hub genes by CytoHubba. RESULTS A total of 43 DEGs identified (15 downregulated and 28 upregulated) were found to be deregulated between OA and MSC-derived chondrocytes. KEGG analysis revealed the enrichment of complement and coagulation cascades and other pathways among the studied chondrocytes. The pathway enrichment identified top KEGG, gene ontology biological process, molecular function, and cellular component. The hub networks identified the top 5 hub genes involved in chondrogenesis, including CLU, PLAT, CP, TIMP3, and SERPINA1. CONCLUSIONS Our results identified significant genes involved in chondrogenesis. These findings provide new avenues for exploring the genetic mechanism underlying cartilage synthesis and novel targets for preclinical intervention and clinical treatment.
Collapse
Affiliation(s)
- Tsung-Yu Lin
- Department of Orthopedic Surgery, Mackay Memorial Hospital, Taipei City 104, Taiwan
- Mackay Junior College of Medicine, Nursing, and Management, New Taipei City 252, Taiwan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106344, Taiwan
| | | | - Rajni Dubey
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Thakur Prasad Chaturvedi
- Division of Orthodontics and Dentofacial Orthopaedics, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shankar A Narayan
- Center of Excellence, Akhand Jyoti Eye Hospital, Mastichak, Patna, Bihar 841219, India
| | - Hsu-Wei Fang
- Department of Medicine Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Lung-Wen Tsai
- Department of Medicine Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department of Information Technology Office, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 11031, Taiwan
| | - Navneet Kumar Dubey
- Victory Biotechnology Co., Ltd., Taipei 114757, Taiwan
- Executive Programme in Healthcare Management, Indian Institute of Management Lucknow 226013, India
| |
Collapse
|
2
|
Im GI. Bone Marrow Aspiration Concentrate in the Treatment of Osteoarthritis: A Review of its Current Clinical Application. Tissue Eng Regen Med 2025; 22:159-166. [PMID: 39841351 PMCID: PMC11794912 DOI: 10.1007/s13770-024-00693-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/07/2024] [Accepted: 12/03/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Bone marrow aspiration concentrate (BMAC) has gained acceptance as a safe orthobiologic for treating osteoarthritis (OA), despite lacking robust supporting evidence. Although several publications have documented the use of BMAC in OA, evidence confirming its unequivocal efficacy remains limited. METHODS This review aims to summarize the current clinical evidence regarding BMAC as a therapeutic for OA, while also presenting the author's perspective. Sixteen studies were reviewed, including ten randomized clinical trials (RCTs) and six cohort studies. RESULTS From the review of existing literature, BMAC injections do not appear to significantly improve pain and function compared to conventional therapies such as hyaluronic acid and corticosteroids, although some studies report a longer duration of effectiveness. Furthermore, the evidence for structural improvement, which was the original rationale for cell therapy, is seldom reported. CONCLUSION In light of these findings, it is suggested that high-quality data from a large patient cohort is needed to determine the role of BMAC injections in OA treatment and address reimbursement issues. From the author's perspective, the introduction of a national registry system that provides valuable information on the cost-effectiveness of various orthopedic procedures may offer a solution.
Collapse
Affiliation(s)
- Gun-Il Im
- Department of Orthopaedics, Dongguk University Ilsan Hospital, Dongguk-Ro 27, Goyang, Republic of Korea.
| |
Collapse
|
3
|
Vadhan A, Gupta T, Hsu WL. Mesenchymal Stem Cell-Derived Exosomes as a Treatment Option for Osteoarthritis. Int J Mol Sci 2024; 25:9149. [PMID: 39273098 PMCID: PMC11395657 DOI: 10.3390/ijms25179149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Osteoarthritis (OA) is a leading cause of pain and disability worldwide in elderly people. There is a critical need to develop novel therapeutic strategies that can effectively manage pain and disability to improve the quality of life for older people. Mesenchymal stem cells (MSCs) have emerged as a promising cell-based therapy for age-related disorders due to their multilineage differentiation and strong paracrine effects. Notably, MSC-derived exosomes (MSC-Exos) have gained significant attention because they can recapitulate MSCs into therapeutic benefits without causing any associated risks compared with direct cell transplantation. These exosomes help in the transport of bioactive molecules such as proteins, lipids, and nucleic acids, which can influence various cellular processes related to tissue repair, regeneration, and immune regulation. In this review, we have provided an overview of MSC-Exos as a considerable treatment option for osteoarthritis. This review will go over the underlying mechanisms by which MSC-Exos may alleviate the pathological hallmarks of OA, such as cartilage degradation, synovial inflammation, and subchondral bone changes. Furthermore, we have summarized the current preclinical evidence and highlighted promising results from in vitro and in vivo studies, as well as progress in clinical trials using MSC-Exos to treat OA.
Collapse
Affiliation(s)
- Anupama Vadhan
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Yunlin 632007, Taiwan;
| | - Tanvi Gupta
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan;
| | - Wen-Li Hsu
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Yunlin 632007, Taiwan;
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| |
Collapse
|
4
|
Muthu S, Ramanathan K, Alagar Yadav S, Jha SK, Ranjan R. Effect of Cellular Dosage of Bone Marrow Aspiration Concentrate on the Radiological Outcomes in Knee Osteoarthritis: A Phase I Dose-Escalation Study. Indian J Orthop 2024; 58:1035-1042. [PMID: 39087044 PMCID: PMC11286885 DOI: 10.1007/s43465-024-01201-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/31/2024] [Indexed: 08/02/2024]
Abstract
INTRODUCTION Knee osteoarthritis(KOA), a chronic degenerative disease, significantly impairs quality of life due to pain and mobility limitations. Traditional treatments focus on symptom management without addressing the underlying disease progression, leading to a growing interest in regenerative medicine approaches. Bone marrow aspirate concentrate (BMAC), rich in mesenchymal stem cells and growth factors, has shown potential for cartilage repair and symptom relief in KOA. Despite promising outcomes, the optimal BMAC dosage for knee OA treatment remains undetermined. This study aims to evaluate the radiological outcomes of varying BMAC dosages in knee OA treatment. METHODS This prospective controlled dose-escalation study involved 75 patients with early-stage knee OA, categorized into three groups based on BMAC dosage administered 10x106 cells (low-dose group), 50 × 106 cells (medium-dose group), or 100x106 cells (high-dose group). All the patients underwent a single intra-articular injection of BMAC and were monitored over a year. The primary outcomes include magnetic resonance observation of cartilage repair tissue (MOCART 2.0) score to assess the cartilage. RESULTS We noted significant improvement in the overall MOCART score (p = 0.027) and subchondral change sub-score (p = 0.048) and defect filling sub-score (p = 0.025) in the medium- and high-dose cohorts compared to the low-dose cohort at 1 year follow-up. Although we noted positive correlation between the clinical and radiological outcome (r = 0.43), we did not find any significant different in the clinical outcome between the treatment groups. CONCLUSION BMAC for OA knee resulted in significant improvement in the radiological scores compared to the baseline. Medium and high doses of BMAC result in significantly higher radiological scores compared to low-dose BMAC at 1 year. However, the radiological improvement did not translate into functional improvement, irrespective of the dosage administered at 1 year. Further research is necessary on the long-term outcomes to understand and optimize the dosing strategy based on clinico-radiological results.
Collapse
Affiliation(s)
- Sathish Muthu
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Uttar Pradesh, Greater Noida, 201310 India
- Department of Orthopaedics, Government Medical College, Dindigul, Tamil Nadu 624001 India
| | - Karthikraja Ramanathan
- Department of Orthopaedics, Government Medical College, Dindigul, Tamil Nadu 624001 India
| | - Sangilimuthu Alagar Yadav
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641021 India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Uttar Pradesh, Greater Noida, 201310 India
- Department of Zoology, Kalindi College, University of Delhi, New Delhi, 110008 India
| | - Rajni Ranjan
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh 201310 India
| |
Collapse
|
5
|
Muthu S, Ramanathan K, Alagar Yadav S, Jha SK, Ranjan R. Increased Cellular Dosage of Bone Marrow Aspiration Concentrate Does Not Translate to Increased Clinical Effectiveness in Knee Osteoarthritis: A Phase I Dose Escalation Study. Indian J Orthop 2024; 58:1001-1008. [PMID: 39087042 PMCID: PMC11286881 DOI: 10.1007/s43465-024-01197-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/31/2024] [Indexed: 08/02/2024]
Abstract
INTRODUCTION Knee osteoarthritis (KOA), a chronic degenerative disease, significantly impairs quality of life due to pain and mobility limitations. Traditional treatments focus on symptom management without addressing the underlying disease progression, leading to a growing interest in regenerative medicine approaches. Bone marrow aspirate concentrate (BMAC), rich in mesenchymal stem cells and growth factors, has shown potential for cartilage repair and symptom relief in KOA. Despite promising outcomes, the optimal BMAC dosage for knee OA treatment remains undetermined. This study aims to evaluate the clinical efficacy and safety of varying BMAC dosages in knee OA treatment. METHODS This prospective controlled dose-escalation study involved 75 patients with early-stage knee OA, categorized into three groups based on BMAC dosage administered 10 × 106 cells (low-dose group), 50 × 106 cells (medium-dose group), or 100 × 106 cells (high-dose group). All the patients underwent a single intra-articular injection of BMAC and were monitored over a year. The primary outcomes include Visual Analog Scale (VAS) for pain and the Knee Injury and Osteoarthritis Outcome Score (KOOS) for joint function recorded at baseline, 1, 3, 6, and 12 months post-intervention. Adverse events were also documented. RESULTS Significant clinical improvements in VAS and KOOS scores were noted across all groups at all time points compared to the baseline. However, these improvements did not significantly differ between dosage groups throughout the follow-up period. Adverse effects were minimal and primarily consisted of transient post-injection pain and effusion, with no dose-dependent increase in complications. CONCLUSION BMAC treatment for knee OA is safe and demonstrates potential for significant pain relief and functional improvement, irrespective of the dosage administered within the tested range. The lack of significant differences among varying dosages suggests a plateau in therapeutic efficacy beyond a certain threshold. Further research is necessary on the long-term outcomes to optimize the dosing strategy.
Collapse
Affiliation(s)
- Sathish Muthu
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh 201310 India
- Department of Orthopaedics, Government Medical College, Dindigul, Tamil Nadu 624001 India
| | - Karthikraja Ramanathan
- Department of Orthopaedics, Government Medical College, Dindigul, Tamil Nadu 624001 India
| | - Sangilimuthu Alagar Yadav
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641021 India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh 201310 India
- Department of Zoology, Kalindi College, University of Delhi, New Delhi, 110008 India
| | - Rajni Ranjan
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh 201310 India
| |
Collapse
|
6
|
Chen MF, Hu CC, Hsu YH, Lin YC, Chen KL, Ueng SWN, Chang Y. The role of EDIL3 in maintaining cartilage extracellular matrix and inhibiting osteoarthritis development. Bone Joint Res 2023; 12:734-746. [PMID: 38081212 PMCID: PMC10713244 DOI: 10.1302/2046-3758.1212.bjr-2023-0087.r1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/03/2025] Open
Abstract
Aims Therapeutic agents that prevent chondrocyte loss, extracellular matrix (ECM) degradation, and osteoarthritis (OA) progression are required. The expression level of epidermal growth factor (EGF)-like repeats and discoidin I-like domains-containing protein 3 (EDIL3) in damaged human cartilage is significantly higher than in undamaged cartilage. However, the effect of EDIL3 on cartilage is still unknown. Methods We used human cartilage plugs (ex vivo) and mice with spontaneous OA (in vivo) to explore whether EDIL3 has a chondroprotective effect by altering OA-related indicators. Results EDIL3 protein prevented chondrocyte clustering and maintained chondrocyte number and SOX9 expression in the human cartilage plug. Administration of EDIL3 protein prevented OA progression in STR/ort mice by maintaining the number of chondrocytes in the hyaline cartilage and the number of matrix-producing chondrocytes (MPCs). It reduced the degradation of aggrecan, the expression of matrix metalloproteinase (MMP)-13, the Osteoarthritis Research Society International (OARSI) score, and bone remodelling. It increased the porosity of the subchondral bone plate. Administration of an EDIL3 antibody increased the number of matrix-non-producing chondrocytes (MNCs) in cartilage and exacerbated the serum concentrations of OA-related pro-inflammatory cytokines, including monocyte chemotactic protein-3 (MCP-3), RANTES, interleukin (IL)-17A, IL-22, and GROα. Administration of β1 and β3 integrin agonists (CD98 protein) increased the expression of SOX9 in OA mice. Hence, EDIL3 might activate β1 and β3 integrins for chondroprotection. EDIL3 may also protect cartilage by attenuating the expression of IL-1β-enhanced phosphokinase proteins in chondrocytes, especially glycogen synthase kinase 3 alpha/beta (GSK-3α/β) and phospholipase C gamma 1 (PLC-γ1). Conclusion EDIL3 has a role in maintaining the cartilage ECM and inhibiting the development of OA, making it a potential therapeutic drug for OA.
Collapse
Affiliation(s)
- Mei-Feng Chen
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chih-Chien Hu
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yung-Heng Hsu
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Chih Lin
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kai-Lin Chen
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Steve W. N. Ueng
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yuhan Chang
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
7
|
Forteza-Genestra MA, Antich-Rosselló M, Ramis-Munar G, Calvo J, Gayà A, Monjo M, Ramis JM. Comparative effect of platelet- and mesenchymal stromal cell-derived extracellular vesicles on human cartilage explants using an ex vivo inflammatory osteoarthritis model. Bone Joint Res 2023; 12:667-676. [PMID: 37852621 PMCID: PMC10584413 DOI: 10.1302/2046-3758.1210.bjr-2023-0109.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
Aims Extracellular vesicles (EVs) are nanoparticles secreted by all cells, enriched in proteins, lipids, and nucleic acids related to cell-to-cell communication and vital components of cell-based therapies. Mesenchymal stromal cell (MSC)-derived EVs have been studied as an alternative for osteoarthritis (OA) treatment. However, their clinical translation is hindered by industrial and regulatory challenges. In contrast, platelet-derived EVs might reach clinics faster since platelet concentrates, such as platelet lysates (PL), are already used in therapeutics. Hence, we aimed to test the therapeutic potential of PL-derived extracellular vesicles (pEVs) as a new treatment for OA, which is a degenerative joint disease of articular cartilage and does not have any curative or regenerative treatment, by comparing its effects to those of human umbilical cord MSC-derived EVs (cEVs) on an ex vivo OA-induced model using human cartilage explants. Methods pEVs and cEVs were isolated by size exclusion chromatography (SEC) and physically characterized by nanoparticle tracking analysis (NTA), protein content, and purity. OA conditions were induced in human cartilage explants (10 ng/ml oncostatin M and 2 ng/ml tumour necrosis factor alpha (TNFα)) and treated with 1 × 109 particles of pEVs or cEVs for 14 days. Then, DNA, glycosaminoglycans (GAG), and collagen content were quantified, and a histological study was performed. EV uptake was monitored using PKH26 labelled EVs. Results Significantly higher content of DNA and collagen was observed for the pEV-treated group compared to control and cEV groups. No differences were found in GAG quantification nor in EVs uptake within any treated group. Conclusion In conclusion, pEVs showed better performance than cEVs in our in vitro OA model. Although further studies are needed, pEVs are shown as a potential alternative to cEVs for cell-free regenerative medicine.
Collapse
Affiliation(s)
- Maria A. Forteza-Genestra
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Miquel Antich-Rosselló
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Guillem Ramis-Munar
- Microscopy Area, Serveis Cietificotècnics, University of the Balearic Islands, Palma, Spain
| | - Javier Calvo
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Fundació Banc de Sang i Teixits de les Illes Balears (FBSTIB), Palma, Spain
| | - Antoni Gayà
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Fundació Banc de Sang i Teixits de les Illes Balears (FBSTIB), Palma, Spain
| | - Marta Monjo
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Joana M. Ramis
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| |
Collapse
|
8
|
Im GI, Henrotin Y. Regenerative medicine for early osteoarthritis. Ther Adv Musculoskelet Dis 2023; 15:1759720X231194813. [PMID: 37694184 PMCID: PMC10486218 DOI: 10.1177/1759720x231194813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/28/2023] [Indexed: 09/12/2023] Open
Abstract
The concept of early osteoarthritis (OA) is based on the expectation that if found and treated in the early stage, the progression of the disease might be arrested before affected joints are irreversibly destroyed. This notion of early OA detection can also bear meaning for regenerative medicine (RM) which is purposed to cure a disease by regenerating the damaged tissue. RM can be a category of disease-modifying osteoarthritis drugs (DMOADs) and provide an attractive treatment for OA, restoring structural damage incurred during the disease by repopulating cells and reconstituting. While cell therapy including the use of stem cells is conflated with RM, it may also comprise gene therapy, exosomes, and other cell or cell-free-derived products. Considering that not all early OA will become advanced OA and that RM has a characteristic of personalized medicine, it would be very important to foretell, even roughly, which patients will progress rapidly and who will favorably respond to regenerative treatment. Subclassification and comprehensive endotyping or phenotyping (E/P) can be very helpful in detecting the population who would benefit from RM as well as rapid progressors who need closer monitoring.
Collapse
Affiliation(s)
- Gun-Il Im
- Department of Orthopedics, Dongguk University Ilsan Hospital, 32 Dongguk-Ro, Goyang Gyeonggi-Do 10326, Republic of Korea
| | | |
Collapse
|
9
|
Macfarlane E, Cavanagh L, Fong-Yee C, Tuckermann J, Chen D, Little CB, Seibel MJ, Zhou H. Deletion of the chondrocyte glucocorticoid receptor attenuates cartilage degradation through suppression of early synovial activation in murine posttraumatic osteoarthritis. Osteoarthritis Cartilage 2023; 31:1189-1201. [PMID: 37105394 DOI: 10.1016/j.joca.2023.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/31/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023]
Abstract
OBJECTIVE Disruption of endogenous glucocorticoid signalling in bone cells attenuates osteoarthritis (OA) in aged mice, however, the role of endogenous glucocorticoids in chondrocytes is unknown. Here, we investigated whether deletion of the glucocorticoid receptor, specifically in chondrocytes, also alters OA progression. DESIGN Knee OA was induced by surgical destabilisation of the medial meniscus (DMM) in male 22-week-old tamoxifen-inducible glucocorticoid receptor knockout (chGRKO) mice and their wild-type (WT) littermates (n = 7-9/group). Mice were harvested 2, 4, 8 and 16 weeks after surgery to examine the spatiotemporal changes in molecular, cellular, and histological characteristics. RESULTS At all time points following DMM, cartilage damage was significantly attenuated in chGRKO compared to WT mice. Two weeks after DMM, WT mice exhibited increased chondrocyte and synoviocyte hypoxia inducible factor (HIF)-2α expression resulting in extensive synovial activation characterised by synovial thickening and increased interleukin-1 beta expression. At 2 and 4 weeks after DMM, WT mice displayed pronounced chondrocyte senescence and elevated catabolic signalling (reduced Yes-associated protein 1 (YAP1) and increased matrix metalloprotease [MMP]-13 expression). Contrastingly, at 2 weeks after DMM, HIF-2α expression and synovial activation were much less pronounced in chGRKO than in WT mice. Furthermore, chondrocyte YAP1 and MMP-13 expression, as well as chondrocyte senescence were similar in chGRKO-DMM mice and sham-operated controls. CONCLUSION Endogenous glucocorticoid signalling in chondrocytes promotes synovial activation, chondrocyte senescence and cartilage degradation by upregulation of catabolic signalling through HIF-2α in murine posttraumatic OA. These findings indicate that inhibition of glucocorticoid signalling early after injury may present a promising way to slow osteoarthritic cartilage degeneration.
Collapse
Affiliation(s)
- Eugenie Macfarlane
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia.
| | - Lauryn Cavanagh
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia.
| | - Colette Fong-Yee
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia.
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Baden-Württemberg, Germany.
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
| | - Christopher B Little
- Raymond Purves Laboratories, Kolling Institute and Institute of Bone and Joint Research, University of Sydney, and Royal North Shore Hospital, St. Leonards, NSW, Australia.
| | - Markus J Seibel
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia; Department of Endocrinology and Metabolism, Concord Repatriation General Hospital, Sydney, NSW, Australia.
| | - Hong Zhou
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
10
|
Ruan X, Gu J, Chen M, Zhao F, Aili M, Zhang D. Multiple roles of ALK3 in osteoarthritis. Bone Joint Res 2023; 12:397-411. [PMID: 37394235 PMCID: PMC10315222 DOI: 10.1302/2046-3758.127.bjr-2022-0310.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by progressive cartilage degradation, synovial membrane inflammation, osteophyte formation, and subchondral bone sclerosis. Pathological changes in cartilage and subchondral bone are the main processes in OA. In recent decades, many studies have demonstrated that activin-like kinase 3 (ALK3), a bone morphogenetic protein receptor, is essential for cartilage formation, osteogenesis, and postnatal skeletal development. Although the role of bone morphogenetic protein (BMP) signalling in articular cartilage and bone has been extensively studied, many new discoveries have been made in recent years around ALK3 targets in articular cartilage, subchondral bone, and the interaction between the two, broadening the original knowledge of the relationship between ALK3 and OA. In this review, we focus on the roles of ALK3 in OA, including cartilage and subchondral bone and related cells. It may be helpful to seek more efficient drugs or treatments for OA based on ALK3 signalling in future.
Collapse
Affiliation(s)
- Xianchun Ruan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jinning Gu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Mingyang Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fulin Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Munire Aili
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Maeng SW, Ko JY, Park TY, Yun J, Park SH, Han SJ, Joo KI, Ha S, Jee M, Im GI, Cha HJ. Adipose stem cell transplantation using adhesive protein-based viscous immiscible liquid for cartilage reconstruction. CHEMICAL ENGINEERING JOURNAL 2023; 463:142379. [DOI: 10.1016/j.cej.2023.142379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Wang M, Tan G, Jiang H, Liu A, Wu R, Li J, Sun Z, Lv Z, Sun W, Shi D. Molecular crosstalk between articular cartilage, meniscus, synovium, and subchondral bone in osteoarthritis. Bone Joint Res 2022; 11:862-872. [PMID: 36464496 PMCID: PMC9792876 DOI: 10.1302/2046-3758.1112.bjr-2022-0215.r1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIMS Osteoarthritis (OA) is a common degenerative joint disease worldwide, which is characterized by articular cartilage lesions. With more understanding of the disease, OA is considered to be a disorder of the whole joint. However, molecular communication within and between tissues during the disease process is still unclear. In this study, we used transcriptome data to reveal crosstalk between different tissues in OA. METHODS We used four groups of transcription profiles acquired from the Gene Expression Omnibus database, including articular cartilage, meniscus, synovium, and subchondral bone, to screen differentially expressed genes during OA. Potential crosstalk between tissues was depicted by ligand-receptor pairs. RESULTS During OA, there were 626, 97, 1,060, and 2,330 differentially expressed genes in articular cartilage, meniscus, synovium, and subchondral bone, respectively. Gene Ontology enrichment revealed that these genes were enriched in extracellular matrix and structure organization, ossification, neutrophil degranulation, and activation at different degrees. Through ligand-receptor pairing and proteome of OA synovial fluid, we predicted ligand-receptor interactions and constructed a crosstalk atlas of the whole joint. Several interactions were reproduced by transwell experiment in chondrocytes and synovial cells, including TNC-NT5E, TNC-SDC4, FN1-ITGA5, and FN1-NT5E. After lipopolysaccharide (LPS) or interleukin (IL)-1β stimulation, the ligand expression of chondrocytes and synovial cells was upregulated, and corresponding receptors of co-culture cells were also upregulated. CONCLUSION Each tissue displayed a different expression pattern in transcriptome, demonstrating their specific roles in OA. We highlighted tissue molecular crosstalk through ligand-receptor pairs in OA pathophysiology, and generated a crosstalk atlas. Strategies to interfere with these candidate ligands and receptors may help to discover molecular targets for future OA therapy.Cite this article: Bone Joint Res 2022;11(12):862-872.
Collapse
Affiliation(s)
- Maochun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Guihua Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Huiming Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Anlong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Rui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jiawei Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ziying Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhongyang Lv
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wei Sun
- Department of Orthopedics, The Affiliated Jiangyin Hospital of Southeast University Medical College, Wuxi, China
| | - Dongquan Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China, Dongquan Shi. E-mail:
| |
Collapse
|
13
|
Expression Profile of New Gene Markers Involved in Differentiation of Canine Adipose-Derived Stem Cells into Chondrocytes. Genes (Basel) 2022; 13:genes13091664. [PMID: 36140831 PMCID: PMC9498306 DOI: 10.3390/genes13091664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
The interest in stem cell research continuously increased over the last decades, becoming one of the most important trends in the 21st century medicine. Stem cell-based therapies have a potential to become a solution for a range of currently untreatable diseases, such as spinal cord injuries, type I diabetes, Parkinson’s disease, heart disease, stroke, and osteoarthritis. Hence, this study, based on canine material, aims to investigate the molecular basis of adipose-derived stem cell (ASC) differentiation into chondrocytes, to serve as a transcriptomic reference for further research aiming to introduce ASC into treatment of bone and cartilage related diseases, such as osteoarthritis in veterinary medicine. Adipose tissue samples were harvested from a canine specimen subjected to a routine ovariohysterecromy procedure at an associated veterinary clinic. The material was treated for ASC isolation and chondrogenic differentiation. RNA samples were isolated at day 1 of culture, day 30 of culture in unsupplemented culture media, and day 30 of culture in chondrogenic differentiation media. The resulting RNA was analyzed using RNAseq assays, with the results validated by RT-qPCR. Between differentiated chondrocytes, early and late cultures, most up- and down-regulated genes in each comparison were selected for further analysis., there are several genes (e.g., MMP12, MPEG1, CHI3L1, and CD36) that could be identified as new markers of chondrogenesis and the influence of long-term culture conditions on ASCs. The results of the study prove the usefulness of the in vitro culture model, providing further molecular insight into the processes associated with ASC culture and differentiation. Furthermore, the knowledge obtained could be used as a molecular reference for future in vivo and clinical studies.
Collapse
|
14
|
Lv G, Wang B, Li L, Li Y, Li X, He H, Kuang L. Exosomes from dysfunctional chondrocytes affect osteoarthritis in Sprague-Dawley rats through FTO-dependent regulation of PIK3R5 mRNA stability. Bone Joint Res 2022; 11:652-668. [PMID: 36066338 PMCID: PMC9533253 DOI: 10.1302/2046-3758.119.bjr-2021-0443.r2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims Exosomes (exo) are involved in the progression of osteoarthritis (OA). This study aimed to investigate the function of dysfunctional chondrocyte-derived exo (DC-exo) on OA in rats and rat macrophages. Methods Rat-derived chondrocytes were isolated, and DCs induced with interleukin (IL)-1β were used for exo isolation. Rats with OA (n = 36) or macrophages were treated with DC-exo or phosphate-buffered saline (PBS). Macrophage polarization and autophagy, and degradation and chondrocyte activity of cartilage tissues, were examined. RNA sequencing was used to detect genes differentially expressed in DC-exo, followed by RNA pull-down and ribonucleoprotein immunoprecipitation (RIP). Long non-coding RNA osteoarthritis non-coding transcript (OANCT) and phosphoinositide-3-kinase regulatory subunit 5 (PIK3R5) were depleted in DC-exo-treated macrophages and OA rats, in order to observe macrophage polarization and cartilage degradation. The PI3K/AKT/mammalian target of rapamycin (mTOR) pathway activity in cells and tissues was measured using western blot. Results DC-exo inhibited macrophage autophagy (p = 0.002) and promoted M1 macrophage polarization (p = 0.002). DC-exo at 20 μg/ml induced collagen degradation (p < 0.001) and inflammatory cell infiltration (p = 0.023) in rats. OANCT was elevated in DC (p < 0.001) and in cartilage tissues of OA patients (p < 0.001), and positively correlated with patients’ Kellgren-Lawrence grade (p < 0.001). PIK3R5 was increased in DC-exo-treated cartilage tissues (p < 0.001), and OANCT bound to fat mass and obesity-associated protein (FTO) (p < 0.001). FTO bound to PIK3R5 (p < 0.001) to inhibit the stability of PIK3R5 messenger RNA (mRNA) (p < 0.001) and disrupt the PI3K/AKT/mTOR pathway (p < 0.001). Conclusion Exosomal OANCT from DC could bind to FTO protein, thereby maintaining the mRNA stability of PIK3R5, further activating the PI3K/AKT/mTOR pathway to exacerbate OA. Cite this article: Bone Joint Res 2022;11(9):652–668.
Collapse
Affiliation(s)
- Guohua Lv
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Bing Wang
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lei Li
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yunchao Li
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xinyi Li
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haoyu He
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lei Kuang
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
15
|
Jun Z, Yuping W, Yanran H, Ziming L, Yuwan L, Xizhong Z, Zhilin W, Xiaoji L. Human acellular amniotic membrane scaffolds encapsulating juvenile cartilage fragments accelerate the repair of rabbit osteochondral defects. Bone Joint Res 2022; 11:349-361. [PMID: 35678202 PMCID: PMC9233407 DOI: 10.1302/2046-3758.116.bjr-2021-0490.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aims The purpose of this study was to explore a simple and effective method of preparing human acellular amniotic membrane (HAAM) scaffolds, and explore the effect of HAAM scaffolds with juvenile cartilage fragments (JCFs) on osteochondral defects. Methods HAAM scaffolds were constructed via trypsinization from fresh human amniotic membrane (HAM). The characteristics of the HAAM scaffolds were evaluated by haematoxylin and eosin (H&E) staining, picrosirius red staining, type II collagen immunostaining, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Human amniotic mesenchymal stem cells (hAMSCs) were isolated, and stemness was verified by multilineage differentiation. Then, third-generation (P3) hAMSCs were seeded on the HAAM scaffolds, and phalloidin staining and SEM were used to detect the growth of hAMSCs on the HAAM scaffolds. Osteochondral defects (diameter: 3.5 mm; depth: 3 mm) were created in the right patellar grooves of 20 New Zealand White rabbits. The rabbits were randomly divided into four groups: the control group (n = 5), the HAAM scaffolds group (n = 5), the JCFs group (n = 5), and the HAAM + JCFs group (n = 5). Macroscopic and histological assessments of the regenerated tissue were evaluated to validate the treatment results at 12 weeks. Results In vitro, the HAAM scaffolds had a network structure and possessed abundant collagen. The HAAM scaffolds had good cytocompatibility, and hAMSCs grew well on the HAAM scaffolds. In vivo, the macroscopic scores of the HAAM + JCFs group were significantly higher than those of the other groups. In addition, histological assessments demonstrated that large amounts of hyaline-like cartilage formed in the osteochondral defects in the HAAM + JCFs group. Integration with surrounding normal cartilage and regeneration of subchondral bone in the HAAM + JCFs group were better than those in the other groups. Conclusion HAAM scaffolds combined with JCFs promote the regenerative repair of osteochondral defects. Cite this article: Bone Joint Res 2022;11(6):349–361.
Collapse
Affiliation(s)
- Zhang Jun
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wang Yuping
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huang Yanran
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liu Ziming
- Peking University Third Hospital, Beijing, China.,Zunyi Medical University, Zunyi, China
| | - Li Yuwan
- Peking University Third Hospital, Beijing, China.,Zunyi Medical University, Zunyi, China
| | - Zhu Xizhong
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wu Zhilin
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Luo Xiaoji
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Evaluation of the Usefulness of Human Adipose-Derived Stem Cell Spheroids Formed Using SphereRing® and the Lethal Damage Sensitivity to Synovial Fluid In Vitro. Cells 2022; 11:cells11030337. [PMID: 35159147 PMCID: PMC8834569 DOI: 10.3390/cells11030337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 11/17/2022] Open
Abstract
Osteoarthritis (OA) is an irreversible degenerative condition causing bone deformation in the joints and articular cartilage degeneration with chronic pain and impaired movement. Adipose-derived stem cell (ADSC) or crushed adipose tissue injection into the joint cavity reportedly improve knee function and symptoms, including pain. Stem cell spheroids may be promising treatment options due to their anti-inflammatory and enhanced tissue regeneration/repair effects. Herein, to form human ADSC spheroids, we used first SphereRing® (Fukoku Co., Ltd., Ageo, Japan), a newly developed rotating donut-shaped tube and determined their characteristics by DNA microarray of mRNA analysis. The variable gene expression cluster was then identified and validated by RT-PCR. Gene expression fluctuations were observed, such as COL15A1 and ANGPTL2, related to vascular endothelial cells and angiogenesis, and TNC, involved in tissue formation. In addition, multiplex cytokine analysis in the medium revealed significant cytokines and growth factors production increase of IL-6, IL-10, etc. However, ADSC administration into the joint cavity involves their contact with the synovial fluid (SF). Therefore, we examined how SF collected from OA patient joint cavities affect 2D-culture ADSCs and ADSC spheroids and observed SF induced cell death. ADSC spheroids could become promising OA treatment options, although studying the administration methods and consider their interaction with SF is essential.
Collapse
|
17
|
Kirkham-Wilson F, Dennison E. Osteoarthritis: Advances and Emerging Treatments. Rheumatology (Oxford) 2022. [DOI: 10.17925/rmd.2022.1.2.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Osteoarthritis (OA) is the most common joint condition globally, affecting 10% of men and 18% of women over the age of 60. Its pathogenesis is multifactorial, which has made identifying modifiable factors to slow the progression or prevent the development of OA challenging. Current treatment focuses largely on lifestyle modification, analgesia and ultimately joint replacement, with no specific therapies currently available. However, research is on-going to provide a disease-modifying drug akin to those available for rheumatoid arthritis. The heterogeneity of OA has allowed a variety of pharmaceutical agents to be considered, each aiming to modify different components of the arthritic joint. Only a limited number of targeted treatments have been found to be efficacious, and those that have been identified have been associated with adverse events, preventing their progression to clinical practice. This article reviews the current management of OA, including tissue-specific approaches and treatments and summarizes the on-going research that aims to identify further therapeutic targets and develop disease-modifying OA drugs.
Collapse
|
18
|
Im GI, Moon JY. Emerging Concepts of Endotypes/Phenotypes in Regenerative Medicine for Osteoarthritis. Tissue Eng Regen Med 2021; 19:321-324. [PMID: 34674181 DOI: 10.1007/s13770-021-00397-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/05/2021] [Accepted: 09/09/2021] [Indexed: 02/03/2023] Open
Abstract
Osteoarthritis (OA) represents a broad spectrum of different conditions. Our present understanding of phenotypes and endotypes can explain the differences in clinical manifestations, etiology, and underlying pathophysiology. Although this concept was first applied in choosing the right target population for clinical trials of disease-modifying osteoarthritis drugs (DMOADs), given that the regenerative medicine so far has not delivered uniformly successful results in structural improvement in OA, it merits a consideration to introduce the concept of phenotype/endotype in the regenerative medicine for OA toward an effort to find the right patients for these expensive therapeutics. A better understanding of molecular endotypes facilitates defining clinical phenotypes more clearly. Based on this knowledge, these patients may respond better to treatments that can preserve joints, including regenerative medicine. On the other hand, patients who are not expected to benefit from these treatments may receive earlier total joint replacement surgery. This will result in a reduction of healthcare costs, as well as a more effective approach to new drug development. An understanding of phenotypes/endotypes will contribute to the selection of suitable patients for regenerative treatment of OA.
Collapse
Affiliation(s)
- Gun-Il Im
- Integrative Research Institute for Life Science, Dongguk University, 814 Siksa-Dong, Goyang, 410-773, Republic of Korea.
| | - Jae-Yeon Moon
- Integrative Research Institute for Life Science, Dongguk University, 814 Siksa-Dong, Goyang, 410-773, Republic of Korea
| |
Collapse
|
19
|
Jankowski M, Kaczmarek M, Wąsiatycz G, Dompe C, Mozdziak P, Jaśkowski JM, Piotrowska-Kempisty H, Kempisty B. Expression Profile of New Marker Genes Involved in Differentiation of Canine Adipose-Derived Stem Cells into Osteoblasts. Int J Mol Sci 2021; 22:6663. [PMID: 34206369 PMCID: PMC8269079 DOI: 10.3390/ijms22136663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/20/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
Next-generation sequencing (RNAseq) analysis of gene expression changes during the long-term in vitro culture and osteogenic differentiation of ASCs remains to be important, as the analysis provides important clues toward employing stem cells as a therapeutic intervention. In this study, the cells were isolated from adipose tissue obtained during routine surgical procedures and subjected to 14-day in vitro culture and differentiation. The mRNA transcript levels were evaluated using the Illumina platform, resulting in the detection of 19,856 gene transcripts. The most differentially expressed genes (fold change >|2|, adjusted p value < 0.05), between day 1, day 14 and differentiated cell cultures were extracted and subjected to bioinformatical analysis based on the R programming language. The results of this study provide molecular insight into the processes that occur during long-term in vitro culture and osteogenic differentiation of ASCs, allowing the re-evaluation of the roles of some genes in MSC progression towards a range of lineages. The results improve the knowledge of the molecular mechanisms associated with long-term in vitro culture and differentiation of ASCs, as well as providing a point of reference for potential in vivo and clinical studies regarding these cells' application in regenerative medicine.
Collapse
Affiliation(s)
- Maurycy Jankowski
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| | - Mariusz Kaczmarek
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznan, Poland;
- Gene Therapy Laboratory, Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Grzegorz Wąsiatycz
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland;
| | - Claudia Dompe
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK;
| | - Paul Mozdziak
- Prestage Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA;
| | - Jędrzej M. Jaśkowski
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 60-701 Poznan, Poland;
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, 87-100 Torun, Poland
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland;
- Prestage Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA;
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| |
Collapse
|