1
|
Liu X, Zhou M, Tan J, Ma L, Tang H, He G, Tao X, Guo L, Kang X, Tang K, Bian X. Inhibition of CX3CL1 by treadmill training prevents osteoclast-induced fibrocartilage complex resorption during TBI healing. Front Immunol 2024; 14:1295163. [PMID: 38283363 PMCID: PMC10811130 DOI: 10.3389/fimmu.2023.1295163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction The healing of tendon-bone injuries is very difficult, often resulting in poor biomechanical performance and unsatisfactory functional recovery. The tendon-bone insertion has a complex four distinct layers structure, and previous studies have often focused on promoting the regeneration of the fibrocartilage layer, neglecting the role of its bone end repair in tendon-bone healing. This study focuses on the role of treadmill training in promoting bone regeneration at the tendon-bone insertion and its related mechanisms. Methods After establishing the tendon-bone insertion injury model, the effect of treadmill training on tendon-bone healing was verified by Micro CT and HE staining; then the effect of CX3CL1 on osteoclast differentiation was verified by TRAP staining and cell culture; and finally the functional recovery of the mice was verified by biomechanical testing and behavioral test. Results Treadmill training suppresses the secretion of CX3CL1 and inhibits the differentiation of local osteoclasts after tendon-bone injury, ultimately reducing osteolysis and promoting tendon bone healing. Discussion Our research has found the interaction between treadmill training and the CX3CL1-C3CR1 axis, providing a certain theoretical basis for rehabilitation training.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Mei Zhou
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jindong Tan
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Lin Ma
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Hong Tang
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Gang He
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xu Tao
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Lin Guo
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xia Kang
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Kanglai Tang
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xuting Bian
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
2
|
Watanabe G, Yamamoto M, Taniguchi S, Sugiyama Y, Hirouchi H, Ishizuka S, Kitamura K, Mizoguchi T, Takayama T, Hayashi K, Abe S. Chronological Changes in the Expression and Localization of Sox9 between Achilles Tendon Injury and Functional Recovery in Mice. Int J Mol Sci 2023; 24:11305. [PMID: 37511063 PMCID: PMC10379325 DOI: 10.3390/ijms241411305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/03/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Tendons help transmit forces from the skeletal muscles and bones. However, tendons have inferior regenerative ability compared to muscles. Despite studies on the regeneration of muscles and bone tissue, only a few have focused on tendinous tissue regeneration, especially tendon regeneration. Sex-determining region Y-box transcription factor 9 (Sox9) is an SRY-related transcription factor with a DNA-binding domain and is an important control factor for cartilage formation. Sox9 is critical to the early-to-middle stages of tendon development. However, how Sox9 participates in the healing process after tendon injury is unclear. We hypothesized that Sox9 is expressed in damaged tendons and is crucially involved in restoring tendon functions. We constructed a mouse model of an Achilles tendon injury by performing a 0.3 mm wide partial excision in the Achilles tendon of mice, and chronologically evaluated the function restoration and localization of the Sox9 expressed in the damaged sites. The results reveal that Sox9 was expressed simultaneously with the formation of the pre-structure of the epitenon, an essential part of the tendinous tissue, indicating that its expression is linked to the functional restoration of tendons. Lineage tracing for Sox9 expressed during tendon restoration revealed the tendon restoration involvement of cells that switched into Sox9-expressing cells after tendon injury. The stem cells involved in tendon regeneration may begin to express Sox9 after injury.
Collapse
Affiliation(s)
- Genji Watanabe
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Masahito Yamamoto
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Shuichirou Taniguchi
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Yuki Sugiyama
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Hidetomo Hirouchi
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Satoshi Ishizuka
- Department of Pharmacology, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Kei Kitamura
- Department of Histology and Developmental Biology, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Toshihide Mizoguchi
- Oral Health Science Center, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Takashi Takayama
- Department of Dentistry, The Jikei University School of Medicine, 3-19-18 Nishi-shinnbashi, Minato, Tokyo 105-8471, Japan
| | - Katsuhiko Hayashi
- Department of Dentistry, The Jikei University School of Medicine, 3-19-18 Nishi-shinnbashi, Minato, Tokyo 105-8471, Japan
| | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| |
Collapse
|