1
|
Nissanka MC, Dilhari A, Wijesinghe GK, Weerasekera MM. Advances in experimental bladder models: bridging the gap between in vitro and in vivo approaches for investigating urinary tract infections. BMC Urol 2024; 24:206. [PMID: 39313789 PMCID: PMC11418205 DOI: 10.1186/s12894-024-01590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Urinary tract infections (UTIs) pose a substantial burden on global healthcare systems. When unraveling the complex pathophysiology of UTIs, bladder models are used to understand complex and multifaceted interactions between different components within the system. This review aimed to bridge the gap between in vitro and in vivo experimental bladder models towards UTI research. We reviewed clinical, animal, and analytical studies and patents from 1959 to the end of 2023. Both in vivo and in vitro models offer unique benefits and drawbacks in understanding UTIs. In vitro models provide controlled environments for studying specific aspects of UTI biology and testing potential treatments, while in vivo models offer insights into how UTIs manifest and progress within living organisms. Thus, both types of models are leading to the development of more effective diagnostic tools and therapeutic interventions against UTIs. Moreover, advanced methodologies involving three-dimensional bladder organoids have also been used to study bladder biology, model bladder-related disorders, and explore new treatments for bladder cancers, UTIs, and urinary incontinence. Narrowing the distance between fundamental scientific research and practical medical applications, these pioneering models hold the key to unlocking new avenues for the development of personalized diagnostics, precision medicine, and ultimately, the alleviation of UTI-related morbidity worldwide.
Collapse
Affiliation(s)
| | - Ayomi Dilhari
- Department of Basic Sciences, Faculty of Allied Health Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
| | | | - Manjula Manoji Weerasekera
- Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| |
Collapse
|
2
|
Wang T, Huang S, He C. Senescent cells: A therapeutic target for osteoporosis. Cell Prolif 2022; 55:e13323. [DOI: 10.1111/cpr.13323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Tiantian Wang
- Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital Sichuan University Chengdu Sichuan China
- Institute of Rehabilitation Medicine, West China Hospital Sichuan University Chengdu Sichuan China
| | - Shishu Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital and West China School of Medicine Sichuan University Chengdu Sichuan China
| | - Chengqi He
- Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital Sichuan University Chengdu Sichuan China
- Institute of Rehabilitation Medicine, West China Hospital Sichuan University Chengdu Sichuan China
| |
Collapse
|
3
|
Abubakar AA, Ali AK, Ibrahim SM, Handool KO, Khan MS, Mustapha NM, Ibrahim TAT, Kaka U, Yusof LM. Roles of Sodium Hydrogen Exchanger (NHE1) and Anion Exchanger (AE2) across Chondrocytes Plasma Membrane during Longitudinal Bone Growth. MEMBRANES 2022; 12:membranes12070707. [PMID: 35877910 PMCID: PMC9321928 DOI: 10.3390/membranes12070707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 12/10/2022]
Abstract
Mammalian long bone growth occurs through endochondral ossification, majorly regulated by the controlled enlargement of chondrocytes at the growth plate (GP). This study aimed to investigate the roles of Na+/H+ (sodium hydrogen exchanger (NHE1)) and HCO3− (anion exchanger [AE2]) during longitudinal bone growth in mammals. Bones from P10 SpragueDawley rat pups were cultured exvivo in the presence or absence of NHE1 and AE2 inhibitors to determine their effect on long bone growth. Gross morphometry, histomorphometry, and immunohistochemistry were used to assess the bone growth. The results revealed that the culture of the bones in the presence of NHE1 and AE2 inhibitors reduces bone growth significantly (p < 0.05) by approximately 11%. The inhibitor significantly (p < 0.05) reduces bone growth velocity and the length of the hypertrophic chondrocyte zone without any effect on the total GP length. The total GP chondrocyte density was significantly (p < 0.05) reduced, but hypertrophic chondrocyte densities remained constant. NHE1 fluorescence signaling across the GP length was higher than AE2, and their localization was significantly (p < 0.05) inhibited at the hypertrophic chondrocytes zone. The GP lengthening was majorly driven by an increase in the overall GP chondrocyte and hypertrophic chondrocyte densities apart from the regulatory volume phenomenon. This may suggest that NHE1 and AE2 could have a regulatory role in long bone growth.
Collapse
Affiliation(s)
- Adamu Abdul Abubakar
- Department of Companion Animal Medicine and Surgery, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.A.A.); (A.K.A.); (S.M.I.); (K.O.H.); (M.S.K.); (U.K.)
- Department of Veterinary Surgery and Radiology, Usmanu Danfodiyo University, Sokoto PMB 2346, Nigeria
| | - Ahmed Khalaf Ali
- Department of Companion Animal Medicine and Surgery, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.A.A.); (A.K.A.); (S.M.I.); (K.O.H.); (M.S.K.); (U.K.)
- Department of Surgery and Theriogenology, College of Veterinary Medicine, University of Mosul, Mosul 00964, Iraq
| | - Sahar Mohammed Ibrahim
- Department of Companion Animal Medicine and Surgery, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.A.A.); (A.K.A.); (S.M.I.); (K.O.H.); (M.S.K.); (U.K.)
- Department of Surgery and Theriogenology, College of Veterinary Medicine, University of Mosul, Mosul 00964, Iraq
| | - Kareem Obayes Handool
- Department of Companion Animal Medicine and Surgery, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.A.A.); (A.K.A.); (S.M.I.); (K.O.H.); (M.S.K.); (U.K.)
| | - Mohammad Shuaib Khan
- Department of Companion Animal Medicine and Surgery, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.A.A.); (A.K.A.); (S.M.I.); (K.O.H.); (M.S.K.); (U.K.)
- Faculty of Veterinary and Animal Science, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Noordin Mohamed Mustapha
- Department of Veterinary Pathology and Microbiology, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | | | - Ubedullah Kaka
- Department of Companion Animal Medicine and Surgery, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.A.A.); (A.K.A.); (S.M.I.); (K.O.H.); (M.S.K.); (U.K.)
| | - Loqman Mohamad Yusof
- Department of Companion Animal Medicine and Surgery, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.A.A.); (A.K.A.); (S.M.I.); (K.O.H.); (M.S.K.); (U.K.)
- Correspondence: ; Tel.: +60-192-590-571; Fax: +60-386-093-959
| |
Collapse
|
4
|
Yazdanpanah Z, Johnston JD, Cooper DML, Chen X. 3D Bioprinted Scaffolds for Bone Tissue Engineering: State-Of-The-Art and Emerging Technologies. Front Bioeng Biotechnol 2022; 10:824156. [PMID: 35480972 PMCID: PMC9035802 DOI: 10.3389/fbioe.2022.824156] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Treating large bone defects, known as critical-sized defects (CSDs), is challenging because they are not spontaneously healed by the patient’s body. Due to the limitations associated with conventional bone grafts, bone tissue engineering (BTE), based on three-dimensional (3D) bioprinted scaffolds, has emerged as a promising approach for bone reconstitution and treatment. Bioprinting technology allows for incorporation of living cells and/or growth factors into scaffolds aiming to mimic the structure and properties of the native bone. To date, a wide range of biomaterials (either natural or synthetic polymers), as well as various cells and growth factors, have been explored for use in scaffold bioprinting. However, a key challenge that remains is the fabrication of scaffolds that meet structure, mechanical, and osteoconductive requirements of native bone and support vascularization. In this review, we briefly present the latest developments and discoveries of CSD treatment by means of bioprinted scaffolds, with a focus on the biomaterials, cells, and growth factors for formulating bioinks and their bioprinting techniques. Promising state-of-the-art pathways or strategies recently developed for bioprinting bone scaffolds are highlighted, including the incorporation of bioactive ceramics to create composite scaffolds, the use of advanced bioprinting technologies (e.g., core/shell bioprinting) to form hybrid scaffolds or systems, as well as the rigorous design of scaffolds by taking into account of the influence of such parameters as scaffold pore geometry and porosity. We also review in-vitro assays and in-vivo models to track bone regeneration, followed by a discussion of current limitations associated with 3D bioprinting technologies for BTE. We conclude this review with emerging approaches in this field, including the development of gradient scaffolds, four-dimensional (4D) printing technology via smart materials, organoids, and cell aggregates/spheroids along with future avenues for related BTE.
Collapse
Affiliation(s)
- Zahra Yazdanpanah
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Zahra Yazdanpanah,
| | - James D. Johnston
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - David M. L. Cooper
- Department of Anatomy Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
5
|
Valderrama A, Zapata MI, Hernandez JC, Cardona-Arias JA. Systematic review of preclinical studies on the neutrophil-mediated immune response to air pollutants, 1980-2020. Heliyon 2022; 8:e08778. [PMID: 35128092 PMCID: PMC8810373 DOI: 10.1016/j.heliyon.2022.e08778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/24/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Preclinical evidence about the neutrophil-mediated response in exposure to air pollutants is scattered and heterogeneous. This has prevented the consolidation of this research field around relevant models that could advance towards clinical research. The purpose of this study was to systematic review the studies of the neutrophils response to air pollutants, following the recommendations of the Cochrane Collaboration and the PRISMA guide, through 54 search strategies in nine databases. We include 234 studies (in vitro, and in vivo), being more frequent using primary neutrophils, Balb/C and C57BL6/J mice, and Sprague-Dawley and Wistar rats. The most frequent readouts were cell counts, cytokines and histopathology. The temporal analysis showed that in the last decade, the use of mice with histopathological and cytokine measurement have predominated. This systematic review has shown that study of the neutrophils response to air pollutants started 40 years ago, and composed of 100 different preclinical models, 10 pollutants, and 11 immunological outcomes. Mechanisms of neutrophils-mediated immunopathology include cellular activation, ROS production, and proinflammatory effects, leading to cell-death, oxidative stress, and inflammatory infiltrates in lungs. This research will allow consolidating the research efforts in this field, optimizing the study of causal processes, and facilitating the advance to clinical studies.
Collapse
Affiliation(s)
- Andrés Valderrama
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Colombia
| | - Maria Isabel Zapata
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Colombia
| | - Juan C. Hernandez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Colombia
| | | |
Collapse
|
6
|
Hul LM, Ibelli AMG, Savoldi IR, Marcelino DEP, Fernandes LT, Peixoto JO, Cantão ME, Higa RH, Giachetto PF, Coutinho LL, Ledur MC. Differentially expressed genes in the femur cartilage transcriptome clarify the understanding of femoral head separation in chickens. Sci Rep 2021; 11:17965. [PMID: 34504189 PMCID: PMC8429632 DOI: 10.1038/s41598-021-97306-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023] Open
Abstract
Locomotor problems are among one of the main concerns in the current poultry industry, causing major economic losses and affecting animal welfare. The most common bone anomalies in the femur are dyschondroplasia, femoral head separation (FHS), and bacterial chondronecrosis with osteomyelitis (BCO), also known as femoral head necrosis (FHN). The present study aimed to identify differentially expressed (DE) genes in the articular cartilage (AC) of normal and FHS-affected broilers by RNA-Seq analysis. In the transcriptome analysis, 12,169 genes were expressed in the femur AC. Of those, 107 genes were DE (FDR < 0.05) between normal and affected chickens, of which 9 were downregulated and 98 were upregulated in the affected broilers. In the gene-set enrichment analysis using the DE genes, 79 biological processes (BP) were identified and were grouped into 12 superclusters. The main BP found were involved in the response to biotic stimulus, gas transport, cellular activation, carbohydrate-derived catabolism, multi-organism regulation, immune system, muscle contraction, multi-organism process, cytolysis, leukocytes and cell adhesion. In this study, the first transcriptome analysis of the broilers femur articular cartilage was performed, and a set of candidate genes (AvBD1, AvBD2, ANK1, EPX, ADA, RHAG) that could trigger changes in the broiler´s femoral growth plate was identified. Moreover, these results could be helpful to better understand FHN in chickens and possibly in humans.
Collapse
Affiliation(s)
- Ludmila Mudri Hul
- grid.412329.f0000 0001 1581 1066Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, PR 85040-080 Brazil
| | - Adriana Mércia Guaratini Ibelli
- grid.412329.f0000 0001 1581 1066Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, PR 85040-080 Brazil ,Embrapa Suínos e Aves, Concórdia, SC 89715-899 Brazil
| | - Igor Ricardo Savoldi
- grid.412287.a0000 0001 2150 7271Programa de Pós-Graduação em Zootecnia, Centro de Educação Superior do Oeste (CEO), Universidade do Estado de Santa Catarina, UDESC, Chapecó, SC 89815-630 Brazil
| | | | | | - Jane Oliveira Peixoto
- grid.412329.f0000 0001 1581 1066Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, PR 85040-080 Brazil ,Embrapa Suínos e Aves, Concórdia, SC 89715-899 Brazil
| | | | - Roberto Hiroshi Higa
- grid.460200.00000 0004 0541 873XEmbrapa Informática Agropecuária, Campinas, SP 70770-901 Brazil
| | | | - Luiz Lehmann Coutinho
- grid.11899.380000 0004 1937 0722Departamento de Zootecnia, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, SP 13418-900 Brazil
| | - Mônica Corrêa Ledur
- Embrapa Suínos e Aves, Concórdia, SC 89715-899 Brazil ,grid.412287.a0000 0001 2150 7271Programa de Pós-Graduação em Zootecnia, Centro de Educação Superior do Oeste (CEO), Universidade do Estado de Santa Catarina, UDESC, Chapecó, SC 89815-630 Brazil
| |
Collapse
|
7
|
Jellyfish Collagen: A Biocompatible Collagen Source for 3D Scaffold Fabrication and Enhanced Chondrogenicity. Mar Drugs 2021; 19:md19080405. [PMID: 34436244 PMCID: PMC8400217 DOI: 10.3390/md19080405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 02/03/2023] Open
Abstract
Osteoarthritis (OA) is a multifactorial disease leading to degeneration of articular cartilage, causing morbidity in approximately 8.5 million of the UK population. As the dense extracellular matrix of articular cartilage is primarily composed of collagen, cartilage repair strategies have exploited the biocompatibility and mechanical strength of bovine and porcine collagen to produce robust scaffolds for procedures such as matrix-induced chondrocyte implantation (MACI). However, mammalian sourced collagens pose safety risks such as bovine spongiform encephalopathy, transmissible spongiform encephalopathy and possible transmission of viral vectors. This study characterised a non-mammalian jellyfish (Rhizostoma pulmo) collagen as an alternative, safer source in scaffold production for clinical use. Jellyfish collagen demonstrated comparable scaffold structural properties and stability when compared to mammalian collagen. Jellyfish collagen also displayed comparable immunogenic responses (platelet and leukocyte activation/cell death) and cytokine release profile in comparison to mammalian collagen in vitro. Further histological analysis of jellyfish collagen revealed bovine chondroprogenitor cell invasion and proliferation in the scaffold structures, where the scaffold supported enhanced chondrogenesis in the presence of TGFβ1. This study highlights the potential of jellyfish collagen as a safe and biocompatible biomaterial for both OA repair and further regenerative medicine applications.
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Novel therapies for damaged and diseased bone are being developed in a preclinical testing process consisting of in vitro cell experiments followed by in vivo animal studies. The in vitro results are often not representative of the results observed in vivo. This could be caused by the complexity of the natural bone environment that is missing in vitro. Ex vivo bone explant cultures provide a model in which cells are preserved in their native three-dimensional environment. Herein, it is aimed to review the current status of bone explant culture models in relation to their potential in complementing the preclinical evaluation process with specific attention paid to the incorporation of mechanical loading within ex vivo culture systems. RECENT FINDINGS Bone explant cultures are often performed with physiologically less relevant bone, immature bone, and explants derived from rodents, which complicates translatability into clinical practice. Mature bone explants encounter difficulties with maintaining viability, especially in static culture. The integration of mechanical stimuli was able to extend the lifespan of explants and to induce new bone formation. Bone explant cultures provide unique platforms for bone research and mechanical loading was demonstrated to be an important component in achieving osteogenesis ex vivo. However, more research is needed to establish a representative, reliable, and reproducible bone explant culture system that includes both components of bone remodeling, i.e., formation and resorption, in order to bridge the gap between in vitro and in vivo research in preclinical testing.
Collapse
Affiliation(s)
- E E A Cramer
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - K Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - S Hofmann
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands.
| |
Collapse
|
9
|
Kim S, Lee M. Rational design of hydrogels to enhance osteogenic potential. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2020; 32:9508-9530. [PMID: 33551566 PMCID: PMC7857485 DOI: 10.1021/acs.chemmater.0c03018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Bone tissue engineering (BTE) encompasses the field of biomaterials, cells, and bioactive molecules to successfully guide the growth and repair of bone tissue. Current BTE strategies rely on delivering osteogenic molecules or cells via scaffolding materials. However, growth factor- and stem cell-based treatments have several limitations, such as source restriction, low stability, difficulties in predicting long-term efficacy, and high costs, among others. These issues have promoted the development of material-based therapy with properties of accessibility, high stability, tunable efficacy, and low-cost production. Hydrogels are widely used in BTE applications because of their unique hydrophilic nature and tunable physicochemical properties to mimic the native bone environment. However, current hydrogel materials are not ideal candidates due to minimal osteogenic capability on their own. Therefore, recent studies of BTE hydrogels attempt to counterbalance these issues by modifying their biophysical properties. In this article, we review recent progress in the design of hydrogels to instruct osteogenic potential, and present strategies developed to precisely control its bone healing properties.
Collapse
Affiliation(s)
- Soyon Kim
- Division of Advanced Prosthodontics, University of California, Los Angeles, USA
| | - Min Lee
- Division of Advanced Prosthodontics, University of California, Los Angeles, USA
- Department of Bioengineering, University of California, Los Angeles, USA
| |
Collapse
|
10
|
Use of in vitro bone models to screen for altered bone metabolism, osteopathies, and fracture healing: challenges of complex models. Arch Toxicol 2020; 94:3937-3958. [PMID: 32910238 PMCID: PMC7655582 DOI: 10.1007/s00204-020-02906-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
Approx. every third hospitalized patient in Europe suffers from musculoskeletal injuries or diseases. Up to 20% of these patients need costly surgical revisions after delayed or impaired fracture healing. Reasons for this are the severity of the trauma, individual factors, e.g, the patients’ age, individual lifestyle, chronic diseases, medication, and, over 70 diseases that negatively affect the bone quality. To investigate the various disease constellations and/or develop new treatment strategies, many in vivo, ex vivo, and in vitro models can be applied. Analyzing these various models more closely, it is obvious that many of them have limits and/or restrictions. Undoubtedly, in vivo models most completely represent the biological situation. Besides possible species-specific differences, ethical concerns may question the use of in vivo models especially for large screening approaches. Challenging whether ex vivo or in vitro bone models can be used as an adequate replacement for such screenings, we here summarize the advantages and challenges of frequently used ex vivo and in vitro bone models to study disturbed bone metabolism and fracture healing. Using own examples, we discuss the common challenge of cell-specific normalization of data obtained from more complex in vitro models as one example of the analytical limits which lower the full potential of these complex model systems.
Collapse
|
11
|
Laranga R, Duchi S, Ibrahim T, Guerrieri AN, Donati DM, Lucarelli E. Trends in Bone Metastasis Modeling. Cancers (Basel) 2020; 12:E2315. [PMID: 32824479 PMCID: PMC7464021 DOI: 10.3390/cancers12082315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
Bone is one of the most common sites for cancer metastasis. Bone tissue is composed by different kinds of cells that coexist in a coordinated balance. Due to the complexity of bone, it is impossible to capture the intricate interactions between cells under either physiological or pathological conditions. Hence, a variety of in vivo and in vitro approaches have been developed. Various models of tumor-bone diseases are routinely used to provide valuable information on the relationship between metastatic cancer cells and the bone tissue. Ideally, when modeling the metastasis of human cancers to bone, models would replicate the intra-tumor heterogeneity, as well as the genetic and phenotypic changes that occur with human cancers; such models would be scalable and reproducible to allow high-throughput investigation. Despite the continuous progress, there is still a lack of solid, amenable, and affordable models that are able to fully recapitulate the biological processes happening in vivo, permitting a correct interpretation of results. In the last decades, researchers have demonstrated that three-dimensional (3D) methods could be an innovative approach that lies between bi-dimensional (2D) models and animal models. Scientific evidence supports that the tumor microenvironment can be better reproduced in a 3D system than a 2D cell culture, and the 3D systems can be scaled up for drug screening in the same way as the 2D systems thanks to the current technologies developed. However, 3D models cannot completely recapitulate the inter- and intra-tumor heterogeneity found in patients. In contrast, ex vivo cultures of fragments of bone preserve key cell-cell and cell-matrix interactions and allow the study of bone cells in their natural 3D environment. Moreover, ex vivo bone organ cultures could be a better model to resemble the human pathogenic metastasis condition and useful tools to predict in vivo response to therapies. The aim of our review is to provide an overview of the current trends in bone metastasis modeling. By showing the existing in vitro and ex vivo systems, we aspire to contribute to broaden the knowledge on bone metastasis models and make these tools more appealing for further translational studies.
Collapse
Affiliation(s)
- Roberta Laranga
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (R.L.); (D.M.D.); (E.L.)
| | - Serena Duchi
- BioFab3D@ACMD, St Vincent’s Hospital, Melbourne, VIC 3065, Australia;
- Department of Surgery, St Vincent’s Hospital, University of Melbourne, Melbourne, VIC 3065, Australia
| | - Toni Ibrahim
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy;
| | - Ania Naila Guerrieri
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (R.L.); (D.M.D.); (E.L.)
| | - Davide Maria Donati
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (R.L.); (D.M.D.); (E.L.)
- Rizzoli Laboratory Unit, Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Via di Barbiano 1/10, 40136 Bologna, Italy
- 3rd Orthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136 Bologna, Italy
| | - Enrico Lucarelli
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (R.L.); (D.M.D.); (E.L.)
| |
Collapse
|
12
|
Aquino-Martinez R, Rowsey JL, Fraser DG, Eckhardt BA, Khosla S, Farr JN, Monroe DG. LPS-induced premature osteocyte senescence: Implications in inflammatory alveolar bone loss and periodontal disease pathogenesis. Bone 2020; 132:115220. [PMID: 31904537 PMCID: PMC6990876 DOI: 10.1016/j.bone.2019.115220] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/13/2019] [Accepted: 12/31/2019] [Indexed: 12/21/2022]
Abstract
Cellular senescence is associated with inflammation and extracellular matrix tissue remodeling through the secretion of proteins termed the senescence-associated secretory phenotype (SASP). Although osteocyte senescence in older individuals in the skeleton is well recognized, whether young alveolar osteocytes can also become senescent is unknown. This is potentially important in the context of periodontal disease, which is an inflammatory condition caused by a gradual change from symbiotic to pathogenic oral microflora that can lead to tooth loss. Our aim was to identify whether senescent osteocytes accumulate in young alveolar bone and whether bacterial-derived lipopolysaccharide (LPS) can influence cellular senescence in alveolar bone. An osteocyte-enriched cell population isolated from alveolar bone expressed increased levels of the known senescence marker p16Ink4a, as well as select SASP markers known to be implicated alveolar bone resorption (Icam1, Il6, Il17, Mmp13 and Tnfα), compared to ramus control cells. Increased senescence of alveolar bone osteocytes was also observed in vivo using the senescence-associated distension of satellites (SADS) assay and increased γH2AX, a marker of DNA damage associated with senescent cells. To approximate a bacterial infection in vitro, alveolar osteocytes were treated with LPS. We found increased expression of various senescence and SASP markers, increased γH2AX staining, increased SA-β-Gal activity and the redistribution of F-actin leading to a larger and flattened cell morphology, all hallmarks of cellular senescence. In conclusion, our data suggests a model whereby bacterial-derived LPS stimulates premature alveolar osteocyte senescence, which in combination with the resultant SASP, could potentially contribute to the onset of alveolar bone loss.
Collapse
Affiliation(s)
- Ruben Aquino-Martinez
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jennifer L Rowsey
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Daniel G Fraser
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Brittany A Eckhardt
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Sundeep Khosla
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Joshua N Farr
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| | - David G Monroe
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
13
|
Bellido T, Delgado-Calle J. Ex Vivo Organ Cultures as Models to Study Bone Biology. JBMR Plus 2020; 4:JBM410345. [PMID: 32161838 PMCID: PMC7059827 DOI: 10.1002/jbm4.10345] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/16/2020] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
The integrity of the skeleton is maintained by the coordinated and balanced activities of the bone cells. Osteoclasts resorb bone, osteoblasts form bone, and osteocytes orchestrate the activities of osteoclasts and osteoblasts. A variety of in vitro approaches has been used in an attempt to reproduce the complex in vivo interactions among bone cells under physiological as well as pathological conditions and to test new therapies. Most cell culture systems lack the proper extracellular matrix, cellular diversity, and native spatial distribution of the components of the bone microenvironment. In contrast, ex vivo cultures of fragments of intact bone preserve key cell-cell and cell-matrix interactions and allow the study of bone cells in their natural 3D environment. Further, bone organ cultures predict the in vivo responses to genetic and pharmacologic interventions saving precious time and resources. Moreover, organ cultures using human bone reproduce human conditions and are a useful tool to test patient responses to therapeutic agents. Thus, these ex vivo approaches provide a platform to perform research in bone physiology and pathophysiology. In this review, we describe protocols optimized in our laboratories to establish ex vivo bone organ cultures and provide technical hints and suggestions. In addition, we present examples on how this technical approach can be employed to study osteocyte biology, drug responses in bone, cancer-induced bone disease, and cross-talk between bone and other organs © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Teresita Bellido
- Department of Anatomy, Cell Biology & Physiology Indiana University School of Medicine Indianapolis IN USA.,Division of Endocrinology, Department of Medicine Indiana University School of Medicine Indianapolis IN USA.,Indiana Center for Musculoskeletal Health Indiana University School of Medicine Indianapolis IN USA.,Richard L. Roudebush Veterans Affairs Medical Center Indianapolis IN USA
| | - Jesus Delgado-Calle
- Department of Anatomy, Cell Biology & Physiology Indiana University School of Medicine Indianapolis IN USA.,Indiana Center for Musculoskeletal Health Indiana University School of Medicine Indianapolis IN USA.,Richard L. Roudebush Veterans Affairs Medical Center Indianapolis IN USA.,Division of Hematology/Oncology, Department of Medicine Indiana University School of Medicine Indianapolis IN USA
| |
Collapse
|
14
|
Li F, Cain JD, Tombran-Tink J, Niyibizi C. Pigment epithelium-derived factor (PEDF) reduced expression and synthesis of SOST/sclerostin in bone explant cultures: implication of PEDF-osteocyte gene regulation in vivo. J Bone Miner Metab 2019; 37:773-779. [PMID: 30607618 DOI: 10.1007/s00774-018-0982-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/21/2018] [Indexed: 12/13/2022]
Abstract
Mutations in Serpinf1 gene which encodes pigment epithelium-derived factor (PEDF) lead to osteogenesis imperfecta type VI whose hallmark is defective matrix mineralization. We reported previously that PEDF reduced expression and synthesis of Sost/Sclerostin as well as other osteocytes genes encoding proteins that regulate matrix mineralization [1]. To determine whether PEDF had an effect on osteocyte gene expression in bone, we used bone explant cultures. First, osteocytes were isolated from surgical waste of bone fragments obtained from patients undergoing elective foot surgeries under approved IRB protocol by Penn State College of Medicine IRB committee. Primary osteocytes treated with PEDF reduced expression and synthesis of Sost/Sclerostin and matrix phosphoglycoprotein (MEPE) as well as dentin matrix protein (DMP-1). On the whole, PEDF reduced osteocyte protein synthesis by 50% and by 75% on mRNA levels. For bone explants, following collagenase digestion, bone fragments were incubated in alpha-MEM supplemented with 250 ng/ml of PEDF or BSA. After 7 days of incubation in a medium supplemented with PEDF, analysis of mRNA by PCR and protein by western blotting of encoded osteocyte proteins showed reduced Sclerostin synthesis by 39% and MEPE by 27% when compared to fragments incubated in medium supplemented with BSA. mRNA expression levels of osteocytes in bone fragments treated with PEDF were reduced by 50% for both SOST and MEPE when compared to BSA-treated bone fragments. Taken together, the data indicate that PEDF has an effect on osteocyte gene expression in bone and encourage further studies to examine effect of PEDF on bone formation indices in animal models and its effect on osteocyte gene expression in vivo following PEDF administration.
Collapse
Affiliation(s)
- Feng Li
- Department of Orthopaedics and Rehabilitation H089, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Jarrett D Cain
- Department of Orthopaedics and Rehabilitation H089, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Joyce Tombran-Tink
- Department of Orthopaedics and Rehabilitation H089, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Christopher Niyibizi
- Department of Orthopaedics and Rehabilitation H089, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
- Biochemistry and Molecular Biology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
| |
Collapse
|
15
|
Development and validation of Alzheimer’s Disease Animal Model for the Purpose of Regenerative Medicine. Cell Tissue Bank 2019; 20:141-151. [DOI: 10.1007/s10561-019-09773-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/10/2019] [Indexed: 01/02/2023]
|
16
|
Srinivasaiah S, Musumeci G, Mohan T, Castrogiovanni P, Absenger-Novak M, Zefferer U, Mostofi S, Bonyadi Rad E, Grün NG, Weinberg AM, Schäfer U. A 300 μm Organotypic Bone Slice Culture Model for Temporal Investigation of Endochondral Osteogenesis. Tissue Eng Part C Methods 2019; 25:197-212. [DOI: 10.1089/ten.tec.2018.0368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Sriveena Srinivasaiah
- Department of Orthopedics and Trauma Surgery, Medical University of Graz, Graz, Austria
- Research Unit for Experimental Neurotraumatology, Department of Neurosurgery, Medical University of Graz, Graz, Austria
| | - Giuseppe Musumeci
- Human Anatomy and Histology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Tamilselvan Mohan
- Institute of Chemistry, University of Graz, Graz, Austria
- Laboratory for Characterization and Processing, Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia
| | - Paola Castrogiovanni
- Human Anatomy and Histology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Ulrike Zefferer
- Research Unit for Experimental Neurotraumatology, Department of Neurosurgery, Medical University of Graz, Graz, Austria
| | - Sepideh Mostofi
- Department of Orthopedics and Trauma Surgery, Medical University of Graz, Graz, Austria
| | - Ehsan Bonyadi Rad
- Department of Orthopedics and Trauma Surgery, Medical University of Graz, Graz, Austria
- Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Nicole Gabriele Grün
- Department of Orthopedics and Trauma Surgery, Medical University of Graz, Graz, Austria
| | | | - Ute Schäfer
- Research Unit for Experimental Neurotraumatology, Department of Neurosurgery, Medical University of Graz, Graz, Austria
| |
Collapse
|
17
|
Abubakar AA, Ibrahim SM, Ali AK, Handool KO, Khan MS, Noordin Mustapha M, Azmi Ibrahim T, Kaka U, Mohamad Yusof L. Postnatal ex vivo rat model for longitudinal bone growth investigations. Animal Model Exp Med 2019; 2:34-43. [PMID: 31016285 PMCID: PMC6431117 DOI: 10.1002/ame2.12051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 11/20/2018] [Accepted: 12/05/2018] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Chondrocytes in the growth plate (GP) undergo increases in volume during different cascades of cell differentiation during longitudinal bone growth. The volume increase is reported to be the most significant variable in understanding the mechanism of long bone growth. METHODS Forty-five postnatal Sprague-Dawley rat pups, 7-15 days old were divided into nine age groups (P7-P15). Five pups were allocated to each group. The rats were sacrificed and tibia and metatarsal bones were harvested. Bone lengths were measured after 0, 24, 48, and 72 hours of ex vivo incubation. Histology of bones was carried out, and GP lengths and chondrocyte densities were determined. RESULTS There were significant differences in bone length among the age groups after 0 and 72 hours of incubation. Histological sectioning was possible in metatarsal bone from all age groups, and in tibia from 7- to 13-day-old rats. No significant differences in tibia and metatarsal GP lengths were seen among different age groups at 0 and 72 hours of incubation. Significant differences in chondrocyte densities along the epiphyseal GP of the bones between 0 and 72 hours of incubation were observed in most of the age groups. CONCLUSION Ex vivo growth of tibia and metatarsal bones of rats aged 7-15 days old is possible, with percentage growth rates of 23.87 ± 0.80% and 40.38 ± 0.95% measured in tibia and metatarsal bone, respectively. Histological sectioning of bones was carried out without the need for decalcification in P7-P13 tibia and P7-P15 metatarsal bone. Increases in chondrocyte density along the GP influence overall bone elongation.
Collapse
Affiliation(s)
- Adamu Abdul Abubakar
- Department of Companion Animal Medicine and SurgeryUniversiti Putra MalaysiaSerdangMalaysia
- Department of Veterinary Surgery and RadiologyUsmanu Danfodiyo UniversitySokotoNigeria
| | - Sahar Mohammed Ibrahim
- Department of Companion Animal Medicine and SurgeryUniversiti Putra MalaysiaSerdangMalaysia
- Department of Surgery and TheriogenologyCollege of Veterinary MedicineUniversity of MosulMosulIraq
| | - Ahmed Khalaf Ali
- Department of Companion Animal Medicine and SurgeryUniversiti Putra MalaysiaSerdangMalaysia
- Department of Surgery and TheriogenologyCollege of Veterinary MedicineUniversity of MosulMosulIraq
| | - Kareem Obayes Handool
- Department of Companion Animal Medicine and SurgeryUniversiti Putra MalaysiaSerdangMalaysia
| | - Mohammad Shuaib Khan
- Department of Companion Animal Medicine and SurgeryUniversiti Putra MalaysiaSerdangMalaysia
- Faculty of Veterinary and Animal ScienceGomal UniversityDera Ismail KhanPakistan
| | | | - Tengku Azmi Ibrahim
- Department of Pre‐Clinical Veterinary SciencesUniversiti Putra MalaysiaSerdangMalaysia
| | - Ubedullah Kaka
- Laboratory of Sustainable Animal Production and BiodiversityInstitute of Tropical Agriculture and Food SecurityUniversiti Putra MalaysiaSerdangMalaysia
| | - Loqman Mohamad Yusof
- Department of Companion Animal Medicine and SurgeryUniversiti Putra MalaysiaSerdangMalaysia
| |
Collapse
|
18
|
Sharma G, Ashhar MU, Aeri V, Katare DP. Development and characterization of late-stage diabetes mellitus and -associated vascular complications. Life Sci 2018; 216:295-304. [PMID: 30408473 DOI: 10.1016/j.lfs.2018.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/28/2018] [Accepted: 11/03/2018] [Indexed: 02/07/2023]
Abstract
Preclinical investigation is the key mark of medical research, as the major breakthroughs including treatment of devastating diseases in biomedical research have been led by animal studies. Type 2 diabetes mellitus (T2DM) is a predominant metabolic disorder having high prevalence of morbidity worldwide which create an urgent need to understand the pathogenesis, complication and other possible influences by development of appropriate animal model. High-fat diet (HFD) fed animals (21 days) were treated with single cycle of repetitive dose (SCRD) of streptozotocin (STZ; 40, 30 and 20 mg/kg/per day in three respective group at 1st, 3rd, and 5th day) and double cycle of repetitive dose (DCRD) of streptozocin (STZ) (20, 10 and 5 mg/kg/per day in three respective group at 1st, 3rd, and 5th day in one cycle and 21st, 23rd, 25th day in second cycle of treatment) to induce late-stage diabetic complications. Induction of hyperglycemia was assessed by fasting and postprandial blood glucose, HbA1c, insulin, C-peptide, pancreatic β-cells and dyslipidaemia up to 12 weeks. Combined treatment of HFD and STZ (20 mg/kg) in the DCRD manner were significantly induced late-stage diabetic complication with sustained hyperglycaemia, no mortality, increased HbA1c and dyslipidaemia, reduced insulin, C-peptide and beta cells. Moreover, biochemical and histological assessment of micro and macrovascular tissues confirmed the significant cardio-renal injury, endothelial and hepatic damage. The study confirmed the development of chronic diabetic model in rat mimicked to clinical pathology with associated micro and macrovascular abnormalities which can further explore the molecular aspects of diseases.
Collapse
Affiliation(s)
- Gunjan Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh 201303, India
| | - Md Umama Ashhar
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh 201303, India
| | - Vidhu Aeri
- Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Deepshikha Pande Katare
- Proteomic & Translational Research Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201313, India.
| |
Collapse
|
19
|
Peroglio M, Gaspar D, Zeugolis DI, Alini M. Relevance of bioreactors and whole tissue cultures for the translation of new therapies to humans. J Orthop Res 2018; 36:10-21. [PMID: 28718947 DOI: 10.1002/jor.23655] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/30/2017] [Indexed: 02/04/2023]
Abstract
The purpose of this review is to provide a brief overview of bioreactor-based culture systems as alternatives to conventional two- and three-dimensional counterparts. The role, challenges, and future aspirations of bioreactors in the musculoskeletal field (e.g., cartilage, intervertebral disc, tendon, and bone) are discussed. Bioreactors, by recapitulating physiological processes, can be used effectively as part of the initial in vitro screening, reducing that way the number of animal required for preclinical assessment, complying with the 3R principles and, in most cases, allowing working with human tissues. The clinical significance of bioreactors is that, by providing more physiologically relevant conditions to customarily used two- and three-dimensional cultures, they hold the potential to provide a testing platform that is more predictable of a whole tissue response, thereby facilitating the screening of treatments before the initiation of clinical trials. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:10-21, 2018.
Collapse
Affiliation(s)
- Marianna Peroglio
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - Diana Gaspar
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway (NUI Galway), Galway, Ireland.,Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway (NUI Galway), Galway, Ireland.,Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Mauro Alini
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| |
Collapse
|
20
|
Fernandes MR, Pedroso AR. Animal experimentation: A look into ethics, welfare and alternative methods. Rev Assoc Med Bras (1992) 2017; 63:923-928. [DOI: 10.1590/1806-9282.63.11.923] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|