1
|
Wang M, Wang J, Xu X, Li E, Xu P. Engineering gene-activated bioprinted scaffolds for enhancing articular cartilage repair. Mater Today Bio 2024; 29:101351. [PMID: 39649247 PMCID: PMC11621797 DOI: 10.1016/j.mtbio.2024.101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/10/2024] Open
Abstract
Untreated articular cartilage injuries often result in severe chronic pain and dyskinesia. Current repair strategies have limitations in effectively promoting articular cartilage repair, underscoring the need for innovative therapeutic approaches. A gene-activated matrix (GAM) is a promising and comprehensive therapeutic strategy that integrates tissue-engineered scaffold-guided gene therapy to promote long-term articular cartilage repair by enhancing gene retention, reducing gene loss, and regulating gene release. However, for effective articular cartilage repair, the GAM scaffold must mimic the complex gradient structure of natural articular cartilage. Three-dimensional (3D) bioprinting technology has emerged as a compelling solution, offering the ability to precisely create complex microstructures that mimic the natural articular cartilage. In this review, we summarize the recent research progress on GAM and 3D bioprinted scaffolds in articular cartilage tissue engineering (CTE), while also exploring future challenges and development directions. This review aims to provide new ideas and concepts for the development of gene-activated bioprinted scaffolds with specific properties tailored to meet the stringent requirements of articular cartilage repair.
Collapse
Affiliation(s)
- Min Wang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, 710000, China
| | - Jiachen Wang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, 710000, China
| | - Xin Xu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, 710000, China
| | - Erliang Li
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, 710000, China
| | - Peng Xu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, 710000, China
| |
Collapse
|
2
|
Zhang W, Hou Y, Yin S, Miao Q, Lee K, Zhou X, Wang Y. Advanced gene nanocarriers/scaffolds in nonviral-mediated delivery system for tissue regeneration and repair. J Nanobiotechnology 2024; 22:376. [PMID: 38926780 PMCID: PMC11200991 DOI: 10.1186/s12951-024-02580-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Tissue regeneration technology has been rapidly developed and widely applied in tissue engineering and repair. Compared with traditional approaches like surgical treatment, the rising gene therapy is able to have a durable effect on tissue regeneration, such as impaired bone regeneration, articular cartilage repair and cancer-resected tissue repair. Gene therapy can also facilitate the production of in situ therapeutic factors, thus minimizing the diffusion or loss of gene complexes and enabling spatiotemporally controlled release of gene products for tissue regeneration. Among different gene delivery vectors and supportive gene-activated matrices, advanced gene/drug nanocarriers attract exceptional attraction due to their tunable physiochemical properties, as well as excellent adaptive performance in gene therapy for tissue regeneration, such as bone, cartilage, blood vessel, nerve and cancer-resected tissue repair. This paper reviews the recent advances on nonviral-mediated gene delivery systems with an emphasis on the important role of advanced nanocarriers in gene therapy and tissue regeneration.
Collapse
Affiliation(s)
- Wanheng Zhang
- Institute of Geriatrics, School of Medicine, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai University, Shanghai, 200444, China
- Department of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yan Hou
- Institute of Geriatrics, School of Medicine, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai University, Shanghai, 200444, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China
| | - Shiyi Yin
- Department of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qi Miao
- Department of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Kyubae Lee
- Department of Biomedical Materials, Konyang University, Daejeon, 35365, Republic of Korea
| | - Xiaojian Zhou
- Department of Pediatrics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China.
| | - Yongtao Wang
- Institute of Geriatrics, School of Medicine, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai University, Shanghai, 200444, China.
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
3
|
Karayianni M, Sentoukas T, Skandalis A, Pippa N, Pispas S. Chitosan-Based Nanoparticles for Nucleic Acid Delivery: Technological Aspects, Applications, and Future Perspectives. Pharmaceutics 2023; 15:1849. [PMID: 37514036 PMCID: PMC10383118 DOI: 10.3390/pharmaceutics15071849] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/09/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Chitosan is a naturally occurring polymer derived from the deacetylation of chitin, which is an abundant carbohydrate found mainly in the shells of various marine and terrestrial (micro)organisms. Chitosan has been extensively used to construct nanoparticles (NPs), which are biocompatible, biodegradable, non-toxic, easy to prepare, and can function as effective drug delivery systems. Moreover, chitosan NPs have been employed in gene and vaccine delivery, as well as advanced cancer therapy, and they can also serve as new therapeutic tools against viral infections. In this review, we summarize the most recent developments in the field of chitosan-based NPs intended as nucleic acid delivery vehicles and gene therapy vectors. Special attention is given to the technological aspects of chitosan complexes for nucleic acid delivery.
Collapse
Affiliation(s)
- Maria Karayianni
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| | - Theodore Sentoukas
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34, M. Curie-Sklodowska St., 41-819 Zabrze, Poland
| | - Athanasios Skandalis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Faculty of Pharmacy, Panepistimioupolis Zografou, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| |
Collapse
|
4
|
Genedy HH, Delair T, Montembault A. Chitosan Based MicroRNA Nanocarriers. Pharmaceuticals (Basel) 2022; 15:ph15091036. [PMID: 36145257 PMCID: PMC9500875 DOI: 10.3390/ph15091036] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Vectorization of microRNAs has shown to be a smart approach for their potential delivery to treat many diseases (i.e., cancer, osteopathy, vascular, and infectious diseases). However, there are barriers to genetic in vivo delivery regarding stability, targeting, specificity, and internalization. Polymeric nanoparticles can be very promising candidates to overcome these challenges. One of the most suitable polymers for this purpose is chitosan. Chitosan (CS), a biodegradable biocompatible natural polysaccharide, has always been of interest for drug and gene delivery. Being cationic, chitosan can easily form particles with anionic polymers to encapsulate microRNA or even complex readily forming polyplexes. However, fine tuning of chitosan characteristics is necessary for a successful formulation. In this review, we cover all chitosan miRNA formulations investigated in the last 10 years, to the best of our knowledge, so that we can distinguish their differences in terms of materials, formulation processes, and intended applications. The factors that make some optimized systems superior to their predecessors are also discussed to reach the highest potential of chitosan microRNA nanocarriers.
Collapse
|
5
|
Lei L, Meng L, Changqing X, Chen Z, Gang Y, Shiyuan F. Effect of cell receptors in the pathogenesis of osteoarthritis: Current insights. Open Life Sci 2022; 17:695-709. [PMID: 35859614 PMCID: PMC9267313 DOI: 10.1515/biol-2022-0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 11/15/2022] Open
Abstract
Osteoarthritis (OA) is a chronic arthritic disease characterized by cartilage degradation, synovial inflammation, and subchondral bone lesions. The studies on the pathogenesis of OA are complex and diverse. The roles of receptors signaling in chondrocyte anabolism, inflammatory factors expression of synovial fibroblast, and angiogenesis in subchondral bone are particularly important for exploring the pathological mechanism of OA and clinical diagnosis and treatment. By reviewing the relevant literature, this article elaborates on the abnormal expression of receptors and the signaling transduction pathways from different pathological changes of OA anatomical components, aiming to provide new research ideas and clinical therapeutic value for OA pathogenesis.
Collapse
Affiliation(s)
- Li Lei
- Department of Orthopaedics, The First Affiliated Hospital of University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui, China
| | - Li Meng
- Department of Orthopaedics, The First Affiliated Hospital of University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui, China
| | - Xu Changqing
- Department of Orthopaedics, Dongxihu District People's Hospital Affiliated to Huazhong University of Science and Technology, Wuhan, China
| | - Zhu Chen
- Department of Orthopaedics, The First Affiliated Hospital of University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui, China
| | - Yao Gang
- Department of Orthopaedics, The First Affiliated Hospital of University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui, China
| | - Fang Shiyuan
- Department of Orthopaedics, The First Affiliated Hospital of University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui, China
| |
Collapse
|
6
|
Huang H, Zhang P, Xiang C, Zeng C, Du Q, Huang W. Effect of bone marrow mesenchymal stem cell transplantation combined with lugua polypeptide injection on osteoarthritis in rabbit knee joint. Connect Tissue Res 2022; 63:370-381. [PMID: 34355626 DOI: 10.1080/03008207.2021.1962314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE This study aimed to elucidate the effect of bone marrow mesenchymal stem cell (BMSC) transplantation combined with the administration of Lugua polypeptide injection into the knee joint cavity to treat knee osteoarthritis (KOA) in rabbits. MATERIAL AND METHODS Sixty white New Zealand rabbits were randomly divided into the blank, model, Lugua polypeptide, BMSC, and combined (Lugua polypeptide plus BMSC) groups, with 12 rabbits in each group. The mRNA and protein expression levels of cyclin D1, bcl-2, TIMP-1, p21, caspase-3, Bax, MMP-1, MMP-13, TLR-4, and NF-κB p65 in chondrocytes, and levels of IL-1, NO, TNF-α, and IL-6 in the synovial fluid were compared. RESULTS The severity of cartilage damage in the combined group was significantly less (P <0.01). Compared to the MG, the mRNA and protein expression levels of cyclin D1, bcl-2 and TIMP-1 in chondrocytes of the three other groups were significantly increased, while those of p21, caspase-3, Bax, MMP-1, MMP-13, TLR-4, and NF-κB p65 in the chondrocytes and levels of IL-1, NO, TNF-α, and IL-6 in the synovial fluid of the three other groups were significantly reduced (P <0.05). The aforementioned indicators in the combined group were significantly better than those of the Lugua polypeptide and BMSCs groups (P <0.05). CONCLUSIONS BMSC transplantation combined with Lugua polypeptide injection may improve KOA-related cartilage tissue damage in rabbits.
Collapse
Affiliation(s)
- Huajun Huang
- Department of Trauma and Joint Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Shunde, China.,Department of Foot and Ankle Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Ping Zhang
- Devision of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chunling Xiang
- Devision of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Canjun Zeng
- Department of Foot and Ankle Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qingjun Du
- Department of Trauma and Joint Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Shunde, China
| | - Wenhua Huang
- Department of Foot and Ankle Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
7
|
Alves JC, Santos A, Jorge P, Lavrador C, Carreira LM. Effect of a single intra-articular administration of stanozolol in a naturally occurring canine osteoarthritis model: a randomised trial. Sci Rep 2022; 12:5887. [PMID: 35393497 PMCID: PMC8989994 DOI: 10.1038/s41598-022-09934-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/23/2022] [Indexed: 11/21/2022] Open
Abstract
Osteoarthritis (OA) is a disease with a high negative impact on patient's quality of life and a high financial burden. It is a source of chronic pain and affects all mammals, including humans and dogs. As the dog is a common model for translation research of human OA, and exploring spontaneous dog OA can improve the health and well-being of both humans and dogs. To describe the effect of the intra-articular administration of stanozolol in a naturally occurring canine OA model, forty canine (N = 40) hip joints were randomly assigned to receive stanozolol or saline (control). On treatment day and at 8, 15, 30, 90, and 180 days post-treatment, several evaluations were conducted: weight distribution, joint range of motion, thigh girth, digital thermography, and radiographic signs. Also, synovial fluid C-reactive protein and interleukin-1 levels were evaluated. Results from four Clinical Metrology Instruments was also gathered. Results were compared with Repeated Measures ANOVA, with a Huynh-Feldt correction, paired-samples t-test, or Wilcoxon signed-rank test, with p < 0.05. OA was graded as mild (90%), moderate (5%), and severe (5%), including both sexes. They had a mean age of 6.5 ± 2.4 years and a bodyweight of 26.7 ± 5.2 kg. No differences were found between groups at treatment day in all considered evaluations. Weight distribution showed significant improvements with stanozolol from 15 days (p < 0.05) up to 180 days (p < 0.01). Lower values during thermographic evaluation in both views taken and improved joint extension at 90 (p = 0.02) and 180 days (p < 0.01) were observed. Pain and function scores improved up to 180 days. In the control group, radiographic signs progressed, in contrast with stanozolol. The use of stanozolol was safe and produced significant improvements in weight-bearing, pain score, and clinical evaluations in a naturally occurring canine OA model.
Collapse
Affiliation(s)
- J C Alves
- Divisão de Medicina Veterinária, Guarda Nacional Republicana (GNR), Rua Presidente Arriaga, 9, 1200-771, Lisbon, Portugal.
- MED - Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal.
| | - A Santos
- Divisão de Medicina Veterinária, Guarda Nacional Republicana (GNR), Rua Presidente Arriaga, 9, 1200-771, Lisbon, Portugal
| | - P Jorge
- Divisão de Medicina Veterinária, Guarda Nacional Republicana (GNR), Rua Presidente Arriaga, 9, 1200-771, Lisbon, Portugal
| | - C Lavrador
- MED - Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal
| | - L Miguel Carreira
- Faculty of Veterinary Medicine, University of Lisbon (FMV/ULisboa), Lisbon, Portugal
- Interdisciplinary Centre for Research in Animal Health (CIISA), University of Lisbon (FMV/ULisboa), Lisbon, Portugal
- Anjos of Assis Veterinary Medicine Centre (CMVAA), Barreiro, Portugal
| |
Collapse
|
8
|
Wu D, Li X, Liu J, Hu C, Li J. Wutou decoction attenuates rheumatoid arthritis by modulating the Ahr/LOC101928120/SHC1 pathway. PHARMACEUTICAL BIOLOGY 2021; 59:811-822. [PMID: 34184948 PMCID: PMC8245077 DOI: 10.1080/13880209.2021.1941131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/11/2021] [Accepted: 06/03/2021] [Indexed: 05/27/2023]
Abstract
CONTEXT Wutou decoction (WTD) is a Chinese herbal formula alleviating rheumatoid arthritis (RA). SHC adaptor protein 1 (SHC1) regulates apoptosis, inflammation, and the production of reactive oxygen species (ROS). The LOC101928120 gene is located near the SHC1 gene. Bioinformatics analysis showed that the long non-coding RNA LOC101928120 binds to histone deacetylase HDAC1 that might regulate SHC1 expression. The LOC101928120 gene might be targeted by the transcriptional factor Aryl hydrocarbon receptor (Ahr). OBJECTIVE This study determines the involvement of the Ahr/LOC101928120/SHC1 pathway in WTD alleviation of RA. MATERIALS AND METHODS Wistar rats were injected with complete Freund's adjuvant in the hind footpad to construe the RA model. WTD (9.8 g/kg/day) was administered intragastrically for 15 days. The CHON-001 chondrocyte cells were treated with IL-1β (10 ng/mL) alone or in combination with WTD (1 μg/mL). A RNA pull-down assay was performed to determine the interaction between LOC101928120 and HDAC1. Ahr targeting the LOC101928120 gene was detected using luciferase reporter and chromatin immunoprecipitation assays. RESULTS WTD alleviated the swelling of the hind paw in rats with RA and suppressed the chondrocyte apoptosis and ROS production caused by IL-1β. WTD decreased SHC1 but increased LOC101928120 in IL-1β-treated chondrocytes. SHC1 knockdown and LOC101928120 overexpression also showed the protection. However, LOC101928120 knockdown attenuated the protective effects of WTD. WTD stimulated Ahr, which promoted LOC101928120 transcription. LOC101928120 recruited HDAC1 to the promoter region of the SHC1 gene, thereby decreasing SHC1. DISCUSSION AND CONCLUSION This study revealed a new mechanism by which WTD alleviates RA by modulating the Ahr/LOC101928120/SHC1 pathway.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/metabolism
- Arthritis, Rheumatoid/chemically induced
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/metabolism
- Basic Helix-Loop-Helix Transcription Factors/agonists
- Basic Helix-Loop-Helix Transcription Factors/biosynthesis
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Freund's Adjuvant
- Inflammation Mediators/antagonists & inhibitors
- Inflammation Mediators/metabolism
- Male
- Rats
- Rats, Wistar
- Receptors, Aryl Hydrocarbon/agonists
- Receptors, Aryl Hydrocarbon/biosynthesis
- Src Homology 2 Domain-Containing, Transforming Protein 1/antagonists & inhibitors
- Src Homology 2 Domain-Containing, Transforming Protein 1/biosynthesis
Collapse
Affiliation(s)
- Dan Wu
- Traditional Chinese Medicine Department, The Fourth Hospital of Changsha, Changsha, Hunan, China
| | - Xi Li
- Traditional Chinese Medicine Department, The Fourth Hospital of Changsha, Changsha, Hunan, China
| | - Jun Liu
- Traditional Chinese Medicine Department, The Fourth Hospital of Changsha, Changsha, Hunan, China
| | - Can Hu
- Traditional Chinese Medicine Department, The Fourth Hospital of Changsha, Changsha, Hunan, China
| | - Jiefang Li
- Traditional Chinese Medicine Department, The Fourth Hospital of Changsha, Changsha, Hunan, China
| |
Collapse
|
9
|
Tamaddon M, Blunn G, Xu W, Alemán Domínguez ME, Monzón M, Donaldson J, Skinner J, Arnett TR, Wang L, Liu C. Sheep condyle model evaluation of bone marrow cell concentrate combined with a scaffold for repair of large osteochondral defects. Bone Joint Res 2021; 10:677-689. [PMID: 34665001 PMCID: PMC8559972 DOI: 10.1302/2046-3758.1010.bjr-2020-0504.r1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Aims Minimally manipulated cells, such as autologous bone marrow concentrates (BMC), have been investigated in orthopaedics as both a primary therapeutic and augmentation to existing restoration procedures. However, the efficacy of BMC in combination with tissue engineering is still unclear. In this study, we aimed to determine whether the addition of BMC to an osteochondral scaffold is safe and can improve the repair of large osteochondral defects when compared to the scaffold alone. Methods The ovine femoral condyle model was used. Bone marrow was aspirated, concentrated, and used intraoperatively with a collagen/hydroxyapatite scaffold to fill the osteochondral defects (n = 6). Tissue regeneration was then assessed versus the scaffold-only group (n = 6). Histological staining of cartilage with alcian blue and safranin-O, changes in chondrogenic gene expression, microCT, peripheral quantitative CT (pQCT), and force-plate gait analyses were performed. Lymph nodes and blood were analyzed for safety. Results The results six months postoperatively showed that there were no significant differences in bone regrowth and mineral density between BMC-treated animals and controls. A significant upregulation of messenger RNA (mRNA) for types I and II collagens in the BMC group was observed, but there were no differences in the formation of hyaline-like cartilage between the groups. A trend towards reduced sulphated glycosaminoglycans (sGAG) breakdown was detected in the BMC group but this was not statistically significant. Functional weightbearing was not affected by the inclusion of BMC. Conclusion Our results indicated that the addition of BMC to scaffold is safe and has some potentially beneficial effects on osteochondral-tissue regeneration, but not on the functional endpoint of orthopaedic interest. Cite this article: Bone Joint Res 2021;10(10):677–689.
Collapse
Affiliation(s)
- Maryam Tamaddon
- Institute of Orthopaedic & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, London, UK
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Wei Xu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, China
| | | | - Mario Monzón
- Departamento de Ingeniería Mecánica, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - James Donaldson
- Knee and Hip Unit, Royal National Orthopaedic Hospital, London, UK
| | - John Skinner
- Institute of Orthopaedic & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, London, UK.,Knee and Hip Unit, Royal National Orthopaedic Hospital, London, UK
| | - Timothy R Arnett
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Ling Wang
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, London, UK
| |
Collapse
|
10
|
Slimi F, Zribi W, Trigui M, Amri R, Gouiaa N, Abid C, Rebai MA, Boudawara T, Jebahi S, Keskes H. The effectiveness of platelet-rich plasma gel on full-thickness cartilage defect repair in a rabbit model. Bone Joint Res 2021; 10:192-202. [PMID: 33730862 PMCID: PMC7998069 DOI: 10.1302/2046-3758.103.bjr-2020-0087.r2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
AIMS The present study investigates the effectiveness of platelet-rich plasma (PRP) gel without adjunct to induce cartilage regeneration in large osteochondral defects in a rabbit model. METHODS A bilateral osteochondral defect was created in the femoral trochlear groove of 14 New Zealand white rabbits. The right knees were filled with PRP gel and the contralateral knees remained untreated and served as control sides. Some animals were killed at week 3 and others at week 12 postoperatively. The joints were harvested and assessed by Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) MRI scoring system, and examined using the International Cartilage Repair Society (ICRS) macroscopic and ICRS histological scoring systems. Additionally, the collagen type II content was evaluated by the immunohistochemical staining. RESULTS After 12 weeks post-surgery, the defects of the PRP group were repaired by hyaline cartilage-like tissue. However, incomplete cartilage regeneration was observed in the PRP group for three weeks. The control groups showed fibrocartilaginous or fibrous tissue, respectively, at each timepoint. CONCLUSION Our study proved that the use of PRP gel without any adjuncts could successfully produce a good healing response and resurface the osteochondral defect with a better quality of cartilage in a rabbit model. Cite this article: Bone Joint Res 2021;10(3):192-202.
Collapse
Affiliation(s)
- Fathia Slimi
- Experimental Surgery of the Musculoskeletal System Laboratory, Faculty of Medicine, Sfax, Tunisia
| | - Wassim Zribi
- Experimental Surgery of the Musculoskeletal System Laboratory, Faculty of Medicine, Sfax, Tunisia
| | - Moez Trigui
- Experimental Surgery of the Musculoskeletal System Laboratory, Faculty of Medicine, Sfax, Tunisia
| | - Raja Amri
- Experimental Surgery of the Musculoskeletal System Laboratory, Faculty of Medicine, Sfax, Tunisia
| | - Nawrez Gouiaa
- Department of Pathology, Habib Bourguiba Hospital, Sfax, Tunisia
| | - Cyrine Abid
- Laboratory of Molecular and Cellular Screening Processes (LPCMC), Biotech Center of Sfax, Sfax, Tunisia
| | - Mohammed Ali Rebai
- Experimental Surgery of the Musculoskeletal System Laboratory, Faculty of Medicine, Sfax, Tunisia
| | - Tahia Boudawara
- Department of Pathology, Habib Bourguiba Hospital, Sfax, Tunisia
| | - Samira Jebahi
- Laboratory of Molecular and Cellular Screening Processes (LPCMC), Biotech Center of Sfax, Sfax, Tunisia
- Energy and Matter Research Laboratory, National Center for Nuclear Science and Technology (CNSTN), Sidi Thabet, Tunisia
| | - Hassib Keskes
- Experimental Surgery of the Musculoskeletal System Laboratory, Faculty of Medicine, Sfax, Tunisia
| |
Collapse
|
11
|
Brzeszczyńska J, Brzeszczyński F, Hamilton DF, McGregor R, Simpson AHRW. Role of microRNA in muscle regeneration and diseases related to muscle dysfunction in atrophy, cachexia, osteoporosis, and osteoarthritis. Bone Joint Res 2020; 9:798-807. [PMID: 33174473 PMCID: PMC7672326 DOI: 10.1302/2046-3758.911.bjr-2020-0178.r1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that have emerged as potential predictive, prognostic, and therapeutic biomarkers, relevant to many pathophysiological conditions including limb immobilization, osteoarthritis, sarcopenia, and cachexia. Impaired musculoskeletal homeostasis leads to distinct muscle atrophies. Understanding miRNA involvement in the molecular mechanisms underpinning conditions such as muscle wasting may be critical to developing new strategies to improve patient management. MicroRNAs are powerful post-transcriptional regulators of gene expression in muscle and, importantly, are also detectable in the circulation. MicroRNAs are established modulators of muscle satellite stem cell activation, proliferation, and differentiation, however, there have been limited human studies that investigate miRNAs in muscle wasting. This narrative review summarizes the current knowledge as to the role of miRNAs in the skeletal muscle differentiation and atrophy, synthesizing the findings of published data. Cite this article: Bone Joint Res 2020;9(11):798-807.
Collapse
Affiliation(s)
- Joanna Brzeszczyńska
- School of Clinical Sciences, University of Edinburgh, Edinburgh, UK
- Department of Molecular Biophysics, University of Lodz, Lodz, Poland
| | | | - David F Hamilton
- School of Clinical Sciences, University of Edinburgh, Edinburgh, UK
| | - Robin McGregor
- Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan, South Korea
| | | |
Collapse
|
12
|
Migliore A, Paoletta M, Moretti A, Liguori S, Iolascon G. The perspectives of intra-articular therapy in the management of osteoarthritis. Expert Opin Drug Deliv 2020; 17:1213-1226. [PMID: 32543240 DOI: 10.1080/17425247.2020.1783234] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/12/2020] [Indexed: 02/08/2023]
Abstract
Management of Osteoarthritis (OA) still is a challenge for clinicians. Taking into account a multidisciplinary approach including pharmacological and non-pharmacological treatments, intra-articular (IA) injection could be considered as an effective local therapy. Areas covered This review provides a new perspective of IA treatment going beyond current available IA agents. We describe novel biological targets for developing new IA agents and innovative modalities of delivery systems. Additional topics include predictors of response for a better choice of IA agents for each patient, diagnostic and prognostic role of biomarkers, accuracy of IA injection, and cost-effectiveness of IA injection. Expert opinion IA treatments seem to be very promising for the management of OA. Identifying clinical and biochemical predictive factors could drive clinician to the appropriate therapeutic approach. To date, there is a gap regarding the benefit of IA treatments in the 'real practice' once they have been adopted. However, considering these promising effects of IA approach, several open questions remain not clarified.
Collapse
Affiliation(s)
| | - Marco Paoletta
- Department of Medical and Surgical Specialties and Dentistry, University of Campania "Luigi Vanvitelli" , Naples, Italy
| | - Antimo Moretti
- Department of Medical and Surgical Specialties and Dentistry, University of Campania "Luigi Vanvitelli" , Naples, Italy
| | - Sara Liguori
- Department of Medical and Surgical Specialties and Dentistry, University of Campania "Luigi Vanvitelli" , Naples, Italy
| | - Giovanni Iolascon
- Department of Medical and Surgical Specialties and Dentistry, University of Campania "Luigi Vanvitelli" , Naples, Italy
| |
Collapse
|
13
|
Razmara E, Bitaraf A, Yousefi H, Nguyen TH, Garshasbi M, Cho WCS, Babashah S. Non-Coding RNAs in Cartilage Development: An Updated Review. Int J Mol Sci 2019; 20:4475. [PMID: 31514268 PMCID: PMC6769748 DOI: 10.3390/ijms20184475] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023] Open
Abstract
In the development of the skeleton, the long bones are arising from the process of endochondral ossification (EO) in which cartilage is replaced by bone. This complex process is regulated by various factors including genetic, epigenetic, and environmental elements. It is recognized that DNA methylation, higher-order chromatin structure, and post-translational modifications of histones regulate the EO. With emerging understanding, non-coding RNAs (ncRNAs) have been identified as another mode of EO regulation, which is consist of microRNAs (miRNAs or miRs) and long non-coding RNAs (lncRNAs). There is expanding experimental evidence to unlock the role of ncRNAs in the differentiation of cartilage cells, as well as the pathogenesis of several skeletal disorders including osteoarthritis. Cutting-edge technologies such as epigenome-wide association studies have been employed to reveal disease-specific patterns regarding ncRNAs. This opens a new avenue of our understanding of skeletal cell biology, and may also identify potential epigenetic-based biomarkers. In this review, we provide an updated overview of recent advances in the role of ncRNAs especially focus on miRNA and lncRNA in the development of bone from cartilage, as well as their roles in skeletal pathophysiology.
Collapse
Affiliation(s)
- Ehsan Razmara
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-111, Iran
| | - Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-111, Iran
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, LA 70112, USA
| | - Tina H Nguyen
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, LA 70112, USA
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-111, Iran
| | | | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-111, Iran.
| |
Collapse
|