1
|
Kračun D, Görlach A, Snedeker JG, Buschmann J. Reactive oxygen species in tendon injury and repair. Redox Biol 2025; 81:103568. [PMID: 40023978 PMCID: PMC11915165 DOI: 10.1016/j.redox.2025.103568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
Reactive oxygen species (ROS) are chemical moieties that in physiological concentrations serve as fast-acting signaling molecules important for cellular homeostasis. However, their excess either due to overproduction or inability of the antioxidant system to inactivate them results in oxidative stress, contributing to cellular dysfunction and tissue damage. In tendons, which are hypovascular, hypocellular, and composed predominantly of extracellular matrix (ECM), particularly collagen I, ROS likely play a dual role: regulating cellular processes such as inflammation, proliferation, and ECM remodeling under physiological conditions, while contributing to tendinopathy and impaired healing when dysregulated. This review explores the sources of ROS in tendons, including NADPH oxidases and mitochondria, and their role in key processes such as tissue adaptation to mechanical load and injury repair, also in systemic conditions such as diabetes. In addition, we integrate the emerging perspective that calcium signaling-mediated by mechanically activated ion channels-plays a central role in tendon mechanotransduction under daily mechanical loads. We propose that mechanical overuse (overload) may lead to hyperactivation of calcium channels, resulting in chronically elevated intracellular calcium levels that amplify ROS production and oxidative stress. Although direct evidence linking calcium channel hyperactivity, intracellular calcium dysregulation, and ROS generation under overload conditions is currently circumstantial, this review aims to highlight these connections and identify them as critical avenues for future research. By framing ROS within the context of both adaptive and maladaptive responses to mechanical load, this review provides a comprehensive synthesis of redox biology in tendon injury and repair, paving the way for future work, including development of therapeutic strategies targeting ROS and calcium signaling to enhance tendon recovery and resilience.
Collapse
Affiliation(s)
- Damir Kračun
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland; University Clinic Balgrist, Orthopaedic Biomechanics, Forchstrasse 340, 8008, Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Gloriastrasse 37/39, 8092, Zurich, Switzerland.
| | - Agnes Görlach
- Experimental and Molecular Paediatric Cardiology, German Heart Centre Munich, TUM University Hospital, Technical University of Munich, Munich, 80636, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Jess G Snedeker
- University Clinic Balgrist, Orthopaedic Biomechanics, Forchstrasse 340, 8008, Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Gloriastrasse 37/39, 8092, Zurich, Switzerland
| | - Johanna Buschmann
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland.
| |
Collapse
|
2
|
Ertik O, Sezen Us A, Gul IB, Us H, Coremen M, Karabulut Bulan O, Yanardag R. Reduction of oxidative damage in prostate tissue caused by radiation and/or chloroquine by apocynin. Free Radic Res 2024; 58:458-475. [PMID: 39148420 DOI: 10.1080/10715762.2024.2393147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Prostate damage can occur in men due to age and genetic factors, especially when exposed to external factors. Radiation (RAD) is a prominent factor leading to oxidative stress and potential prostate damage. Additionally, chloroquine (CQ), used in malaria treatment, can induce oxidative stress in a dose-dependent manner. Therefore, reducing and preventing oxidative damage in prostate tissue caused by external factors is crucial. Rats used in the study were divided into seven groups, CQ, apocynin (APO), RAD, CQ + APO, CQ + RAD, APO + RAD, CQ + APO + RAD. Subsequently, in vivo biochemical parameters of prostate tissues were examined, including reduced glutathione, lipid peroxidation, superoxide dismutase, glutathione reductase, glutathione peroxidase, glutathione-S-transferase activities, and total antioxidant status, total oxidant status, reactive oxygen species, oxidative stress index, advanced oxidation protein products and histologically. The in vivo results presented in our study showed that APO reduced oxidative stress and had a protective effect on prostate tissue in the CQ, RAD, and CQ + RAD groups as a results of biochemical and histological experiments. Additionally, in silico studies revealed a higher binding affinity of diapocynin to target proteins compared to APO. As a histological results, RAD and CQ alone or in combination did not induce damage in prostate tissues, whereas mild histopathological findings such as hyperemia and haemorrhage were observed in all APO-treated groups. The results suggest that the use of APO for the treatment of oxidative damage induced by CQ and RAD in rats.
Collapse
Affiliation(s)
- Onur Ertik
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
- Department of Chemistry, Faculty of Engineering and Science, Bursa Technical University, Bursa, Türkiye
| | - Ayca Sezen Us
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Türkiye
| | - Ilknur Bugan Gul
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Türkiye
| | - Huseyin Us
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Türkiye
| | - Melis Coremen
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Türkiye
| | - Omur Karabulut Bulan
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Türkiye
| | - Refiye Yanardag
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
| |
Collapse
|
3
|
Shahid H, Morya VK, Oh JU, Kim JH, Noh KC. Hypoxia-Inducible Factor and Oxidative Stress in Tendon Degeneration: A Molecular Perspective. Antioxidants (Basel) 2024; 13:86. [PMID: 38247510 PMCID: PMC10812560 DOI: 10.3390/antiox13010086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Tendinopathy is a debilitating condition marked by degenerative changes in the tendons. Its complex pathophysiology involves intrinsic, extrinsic, and physiological factors. While its intrinsic and extrinsic factors have been extensively studied, the role of physiological factors, such as hypoxia and oxidative stress, remains largely unexplored. This review article delves into the contribution of hypoxia-associated genes and oxidative-stress-related factors to tendon degeneration, offering insights into potential therapeutic strategies. The unique aspect of this study lies in its pathway-based evidence, which sheds light on how these factors can be targeted to enhance overall tendon health.
Collapse
Affiliation(s)
- Hamzah Shahid
- Dongtan Sacred Heart Hospital, Hallym University, Hwaseong-si 18450, Gyeonggi-do, Republic of Korea (J.-H.K.)
- School of Medicine, Hallym University, Chuncheon City 24252, Gangwon-do, Republic of Korea
| | - Vivek Kumar Morya
- Dongtan Sacred Heart Hospital, Hallym University, Hwaseong-si 18450, Gyeonggi-do, Republic of Korea (J.-H.K.)
| | - Ji-Ung Oh
- Dongtan Sacred Heart Hospital, Hallym University, Hwaseong-si 18450, Gyeonggi-do, Republic of Korea (J.-H.K.)
| | - Jae-Hyung Kim
- Dongtan Sacred Heart Hospital, Hallym University, Hwaseong-si 18450, Gyeonggi-do, Republic of Korea (J.-H.K.)
| | - Kyu-Cheol Noh
- Dongtan Sacred Heart Hospital, Hallym University, Hwaseong-si 18450, Gyeonggi-do, Republic of Korea (J.-H.K.)
| |
Collapse
|
4
|
Du Y, Xu T, Luo D, Wang Y, Yin H, Liu C, Li S. Perfluorooctane sulfonate-induced apoptosis in kidney cells by triggering the NOX4/ROS/JNK axis and antagonism of cannabidiol. ENVIRONMENTAL TOXICOLOGY 2023; 38:1651-1664. [PMID: 36988283 DOI: 10.1002/tox.23794] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/10/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is one of the persistent organic pollutants (POPs), which can cause severe nephrotoxicity in mammals. Cannabinol (CBD), a nonpsychoactive cannabinoid obtained from the cannabis plant, has attracted attention in recent years for its excellent antioxidant properties. NADPH oxidase 4 (NOX4) has an important effect in supporting normal renal physiological function. The potential mechanisms of PFOS nephrotoxicity and whether CBD can prevent renal damage caused by PFOS remain unclear. This work aimed to study the mechanisms of PFOS-induced kidney damage and the protective role of CBD against PFOS-induced kidney damage. We demonstrated that PFOS led to renal insufficiency and structural damage in mice, induced overexpression of NOX4 and the onset of oxidative stress, and activated apoptosis of the mitochondrial pathway via the JNK signaling pathway. However, treatment with CBD reversed these changes. For further investigation of the potential mechanism of PFOS-induced renal cell apoptosis, the expression of NOX4 was inhibited in vitro experiments using Apocynin, an effective NOX4 inhibitor. The outcomes showed that PFOS-induced ROS production and JNK signaling pathway activation and apoptosis in human embryonic kidney (HEK293) cells were significantly reduced after inhibition of NOX4. This suggests that PFOS-induced NOX4 overexpression serves as an upstream event for JNK pathway activation. In conclusion, the findings suggest that PFOS induces apoptosis in renal cells via the NOX4/ROS/JNK pathway. Meanwhile, CBD alleviated PFOS-induced renal apoptosis through the inhibition of NOX4/ROS/JNK axis activation.
Collapse
Affiliation(s)
- Yongzhen Du
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China
| | - Dongliu Luo
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China
| | - Yixuan Wang
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China
| | - Hang Yin
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China
| | - Chengguo Liu
- Instrumental Analysis Center, Northeast Agricultural University, 150030, Harbin, People's Republic of China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China
| |
Collapse
|
5
|
Park TJ, Park SY, Cho W, Oh H, Lee HJ, Abd El-Aty AM, Bayram C, Jeong JH, Jung TW. Developmental endothelial locus-1 attenuates palmitate-induced apoptosis in tenocytes through the AMPK/autophagy-mediated suppression of inflammation and endoplasmic reticulum stress. Bone Joint Res 2022; 11:854-861. [PMID: 36458454 PMCID: PMC9792873 DOI: 10.1302/2046-3758.1112.bjr-2022-0077.r2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIMS Myokine developmental endothelial locus-1 (DEL-1) has been documented to alleviate inflammation and endoplasmic reticulum (ER) stress in various cell types. However, the effects of DEL-1 on inflammation, ER stress, and apoptosis in tenocytes remain unclear. METHODS Human primary tenocytes were cultured in palmitate (400 μM) and palmitate plus DEL-1 (0 to 2 μg/ml) conditions for 24 hours. The expression levels of ER stress markers and cleaved caspase 3, as well as phosphorylated 5' adenosine monophosphate-activated protein kinase (AMPK) and autophagy markers, were assessed by Western blotting. Autophagosome formation was measured by staining with monodansylcadaverine, and apoptosis was determined by cell viability assay and caspase 3 activity assay. RESULTS We found that treatment with DEL-1 suppressed palmitate-induced inflammation, ER stress, and apoptosis in human primary tenocytes. DEL-1 treatment augmented LC3 conversion and p62 degradation as well as AMPK phosphorylation. Moreover, small interfering RNA for AMPK or 3-methyladenine (3-MA), an autophagy inhibitor, abolished the suppressive effects of DEL-1 on inflammation, ER stress, and apoptosis in tenocytes. Similar to DEL-1, 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an activator of AMPK, also attenuated palmitate-induced inflammation, ER stress, and apoptosis in tenocytes, which 3-MA reversed. CONCLUSION These results revealed that DEL-1 suppresses inflammation and ER stress, thereby attenuating tenocyte apoptosis through AMPK/autophagy-mediated signalling. Thus, regular exercise or administration of DEL-1 may directly contribute to improving tendinitis exacerbated by obesity and insulin resistance.Cite this article: Bone Joint Res 2022;11(12):854-861.
Collapse
Affiliation(s)
- Tae Jun Park
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Seung Yeon Park
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, South Korea,Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, South Korea
| | - Wonjun Cho
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Heeseung Oh
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Hyun Jung Lee
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, South Korea,Department of Anatomy and Cell Biology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, South Korea
| | - A. M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt,Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Cemil Bayram
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, South Korea,Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, South Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, South Korea, Tae Woo Jung. E-mail:
| |
Collapse
|
6
|
Yoshikawa T, Mifune Y, Inui A, Nishimoto H, Yamaura K, Mukohara S, Shinohara I, Kuroda R. Quercetin treatment protects the Achilles tendons of rats from oxidative stress induced by hyperglycemia. BMC Musculoskelet Disord 2022; 23:563. [PMID: 35689230 PMCID: PMC9188208 DOI: 10.1186/s12891-022-05513-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/01/2022] [Indexed: 11/18/2022] Open
Abstract
Background Quercetin, a flavonoid abundantly in vegetables and fruits, exerts antioxidant and anti-inflammatory effects. We investigated the protective effects of quercetin against oxidative stress in the Achilles tendons of diabetic rats. Methods Cells were collected from the Achilles tendons of Sprague–Dawley rats and cultured under four conditions: regular glucose (RG) without quercetin (Quer-), RG with quercetin (Quer +), high-glucose (HG) Quer-, and HG Quer + . The expression of genes related to NADPH oxidase (NOX) and inflammation, reactive oxygen species accumulation, and apoptosis rates was analyzed. Additionally, diabetic rats were divided into two groups and subjected to quercetin (group Q) or no quercetin (group C) treatment. Histological evaluation and expression analysis of relevant genes in the Achilles tendon were performed. Results In rat tendon-derived cells, the expression of Nox1, Nox4, and Il6; reactive oxygen species accumulation; and apoptosis rates were significantly decreased by quercetin treatment in the HG group. The collagen fiber arrangement was significantly disorganized in the diabetic rat Achilles tendons in group C compared with that in group Q. The mRNA and protein expression levels of NOX1 and NOX4 were significantly decreased upon quercetin treatment. Furthermore, the expression of Il6, type III collagen, Mmp2, and Timp2 was significantly decreased, whereas that of type I collagen was significantly increased in group Q compared with that in group C. Conclusions Quercetin treatment decreases NOX expression and thus exerts antioxidant and anti-inflammatory effects in the Achilles tendons of diabetic rats. Quercetin treatment may be effective against diabetic tendinopathy.
Collapse
Affiliation(s)
- Tomoya Yoshikawa
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Yutaka Mifune
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan.
| | - Atsuyuki Inui
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Hanako Nishimoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Kohei Yamaura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Shintaro Mukohara
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Issei Shinohara
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
7
|
Shinohara I, Mifune Y, Inui A, Nishimoto H, Yamaura K, Mukohara S, Yoshikawa T, Kato T, Furukawa T, Hoshino Y, Matsushita T, Kuroda R. Biochemical Markers of Aging (Advanced Glycation End Products) and Degeneration Are Increased in Type 3 Rotator Cuff Tendon Stumps With Increased Signal Intensity Changes on MRI. Am J Sports Med 2022; 50:1960-1970. [PMID: 35486520 DOI: 10.1177/03635465221090649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Advanced glycation end products (AGEs) are end products of protein glycation that bind to the receptor for AGEs (RAGE) and activate nicotinamide adenine dinucleotide phosphate oxidase (NOX), resulting in increased oxidative stress and rotator cuff fragility. Stump classification using the signal intensity ratio of the tendon rupture site to the deltoid muscle in the coronal view of T2-weighted fat-suppressed magnetic resonance imaging (MRI) scans is an indicator of clinical outcomes after rotator cuff repair surgery. Comparing the signal intensities of the deltoid (D) and rotator cuff tears (C), Ishitani et al. classified C/D <0.8 as type 1, 0.8 to 1.3 as type 2, and >1.3 as type 3. HYPOTHESIS/PURPOSE It was hypothesized that the oxidative stress and collagen degeneration that occur in the rotator cuff due to accumulation of AGEs can be assessed on MRI scans (stump classification). Therefore, this study aimed to compare AGE-related factors in the rotator cuff tear site tissues based on stump classification. STUDY DESIGN Descriptive laboratory study. METHODS The authors included 30 patients (11 with type 1, 9 with type 2, and 10 with type 3; mean age, 62.3 years) who underwent surgery for complete rotator cuff tears at our hospital. Tendon tissue was harvested from the torn rotator cuff site during surgery for tissue and cell evaluation. RESULTS There was no significant difference in the mean age according to stump classification. The number of patients with diabetes was significantly larger in type 3 than in the other types (P < .05). Tissue evaluation showed significantly higher expression of AGE and RAGE staining in type 3 than in the other types (~6.7-fold; P < .01). Cell evaluation showed that the expression rates of reactive oxygen species and apoptosis were significantly higher in type 3 than in the other types (~4.3-fold; P < .01). Gene expression by real-time polymerase chain reaction showed significantly higher RAGE (~5.1-fold), NOX (~5.3-fold), and IL (~3.0-fold) in type 3 than in the other types (P < .05). CONCLUSION Stump classification type 3 exhibited the highest accumulation of AGEs and the highest oxidative stress and apoptosis, suggesting a high degree of degeneration and inflammation. Imaging based on stump classification reflects the degeneration and fragility of the torn rotator cuff site. CLINICAL RELEVANCE This study provides evidence of a relationship between stump classification, which reflects rotator cuff fragility on MRI, and pathologies related to advanced glycation end products.
Collapse
Affiliation(s)
- Issei Shinohara
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yutaka Mifune
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Atsuyuki Inui
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Hanako Nishimoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Kohei Yamaura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Shintaro Mukohara
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Tomoya Yoshikawa
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Tatsuo Kato
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Takahiro Furukawa
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yuichi Hoshino
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Takehiko Matsushita
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
8
|
Yoshikawa T, Mifune Y, Inui A, Nishimoto H, Yamaura K, Mukohara S, Shinohara I, Kuroda R. Influence of Diabetes-Induced Glycation and Oxidative Stress on the Human Rotator Cuff. Antioxidants (Basel) 2022; 11:antiox11040743. [PMID: 35453426 PMCID: PMC9032678 DOI: 10.3390/antiox11040743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
Most shoulder rotator cuff tears (RCTs) are caused by non-traumatic age-related rotator cuff degeneration, of which hyperglycemia is a risk factor due to its glycation reaction and oxidative stress. We aimed to identify the influence of diabetes-induced glycation and oxidative stress in patients with non-traumatic shoulder RCTs. Twenty patients, aged over 50 years, with non-traumatic shoulder RCTs participated in this study. Patients with a history of diabetes mellitus or preoperative HbA1c ≥ 6.5% were assigned to the diabetic group (n = 10), and the rest to the non-diabetic group (n = 10). Cell proliferation; expression of genes related to oxidative stress, glycation reaction, inflammation, and collagen; intracellular reactive oxygen species (ROS) levels; and apoptosis rates were analyzed. The diabetic group had significantly lower cell proliferation than the non-diabetic group. In the diabetic group, the mRNA expression levels of NOX1, NOX4, IL6, RAGE, type III collagen, MMP2, TIMP1, and TIMP2 were significantly higher; type I collagen expression was significantly lower; and the rate of ROS-positive cells and apoptotic cells, as well as the expression of advanced glycation end-products (AGEs) and the receptor for AGEs (RAGE), was significantly higher. In conclusion, hyperglycemia caused by diabetes mellitus increased AGE and RAGE expression, and led to increased NOX expression, ROS production, and apoptosis in the human rotator cuff. This provides scope to find a preventive treatment for non-traumatic RCTs by inhibiting glycation and oxidative stress.
Collapse
Affiliation(s)
| | - Yutaka Mifune
- Correspondence: ; Tel.: +81-78-382-5985; Fax: +81-78-351-6944
| | | | | | | | | | | | | |
Collapse
|
9
|
Roles of Oxidative Stress in Acute Tendon Injury and Degenerative Tendinopathy-A Target for Intervention. Int J Mol Sci 2022; 23:ijms23073571. [PMID: 35408931 PMCID: PMC8998577 DOI: 10.3390/ijms23073571] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
Both acute and chronic tendon injuries are disabling sports medicine problems with no effective treatment at present. Sustained oxidative stress has been suggested as the major factor contributing to fibrosis and adhesion after acute tendon injury as well as pathological changes of degenerative tendinopathy. Numerous in vitro and in vivo studies have shown that the inhibition of oxidative stress can promote the tenogenic differentiation of tendon stem/progenitor cells, reduce tissue fibrosis and augment tendon repair. This review aims to systematically review the literature and summarize the clinical and pre-clinical evidence about the potential relationship of oxidative stress and tendon disorders. The literature in PubMed was searched using appropriate keywords. A total of 81 original pre-clinical and clinical articles directly related to the effects of oxidative stress and the activators or inhibitors of oxidative stress on the tendon were reviewed and included in this review article. The potential sources and mechanisms of oxidative stress in these debilitating tendon disorders is summarized. The anti-oxidative therapies that have been examined in the clinical and pre-clinical settings to reduce tendon fibrosis and adhesion or promote healing in tendinopathy are reviewed. The future research direction is also discussed.
Collapse
|
10
|
Yamaura K, Mifune Y, Inui A, Nishimoto H, Kurosawa T, Mukohara S, Hoshino Y, Niikura T, Kuroda R. Antioxidant effect of nicotinamide mononucleotide in tendinopathy. BMC Musculoskelet Disord 2022; 23:249. [PMID: 35287653 PMCID: PMC8922828 DOI: 10.1186/s12891-022-05205-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/09/2022] [Indexed: 12/12/2022] Open
Abstract
Background A link between tendinopathy and oxidative stress has been recently reported. Nicotinamide mononucleotide (NMN) is a precursor of nicotinamide adenine dinucleotide, which plays an important role in cell redox homeostasis. The aim of this study was to evaluate the antioxidant effect of NMN on tendinopathy in vitro and in vivo. Methods Tenocytes from healthy Sprague-Dawley rats were cultured in regular glucose (RG) and high-glucose (HG) conditions with or without NMN, and were divided into four groups: RG NMN(−), RG NMN(+), HG NMN(−), and HG NMN(+). Cell viability, reactive oxygen species (ROS) accumulation, apoptotic rate, and mRNA expression of nicotinamide adenine dinucleotide phosphate oxidase (NOX)1, NOX4, interleukin (IL)6, sirtuin (SIRT)1, and SIRT6 were investigated. In addition, rats with collagenase-induced tendinopathy were treated with or without NMN. Immunostaining of NOX1 and NOX4; mRNA expression of SIRT1, SIRT6, and IL6; and superoxide dismutase (SOD) activity measurements in the Achilles tendon were performed. Results NMN increased the expression of SIRT1 and SIRT6 in rat tenocytes, but decreased the levels of NOX1, NOX4, IL6, ROS, and apoptosis. In Achilles tendons with collagenase-induced tendinopathy, NMN increased the mRNA expression of SIRT1 and SIRT6, as well as SOD activity; while suppressing protein expression of NOX1 and NOX4, and mRNA expression of IL6. Conclusion The in vitro and in vivo results of this study show that NMN exerts an antioxidant effect on tendinopathy by promoting the expression of SIRT while inhibiting that of NOX.
Collapse
Affiliation(s)
- Kohei Yamaura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yutaka Mifune
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Atsuyuki Inui
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Hanako Nishimoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Takashi Kurosawa
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Shintaro Mukohara
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yuichi Hoshino
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Takahiro Niikura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| |
Collapse
|
11
|
Mukohara S, Mifune Y, Inui A, Nishimoto H, Kurosawa T, Yamaura K, Yoshikawa T, Kuroda R. In vitro and in vivo tenocyte-protective effectiveness of dehydroepiandrosterone against high glucose-induced oxidative stress. BMC Musculoskelet Disord 2021; 22:519. [PMID: 34090401 PMCID: PMC8180149 DOI: 10.1186/s12891-021-04398-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Dehydroepiandrosterone (DHEA), an adrenal steroid, has a protective role against diabetes. This study aimed to investigate the in vitro and in vivo protective effects of DHEA against high glucose-induced oxidative stress in tenocytes and tendons. METHODS Tenocytes from normal Sprague-Dawley rats were cultured in low-glucose (LG) or high-glucose (HG) medium with or without DHEA. The experimental groups were: control group (LG without DHEA), LG with DHEA, HG without DHEA, and HG with DHEA. Reactive oxygen species (ROS) production, apoptosis, and messenger RNA (mRNA) expression of NADPH oxidase (NOX) 1 and 4, and interleukin-6 (IL-6) were determined. Further, diabetic rats were divided into a control group and a DHEA-injected group (DHEA group). NOX1 and NOX4 protein expression and mRNA expression of NOX1, NOX4, IL-6, matrix metalloproteinase (MMP)-2, tissue inhibitors of matrix metalloproteinase (TIMP)-2, and type I and III collagens in the Achilles tendon were determined. RESULTS In rat tenocytes, DHEA decreased the expression of NOX1 and IL-6, ROS accumulation, and apoptotic cells. In the diabetic rat Achilles tendon, NOX1 protein expression and mRNA expression of NOX1, IL-6, MMP-2, TIMP-2, and type III collagen were significantly lower while type I collagen expression was significantly higher in the DHEA group than in the control group. CONCLUSIONS DHEA showed antioxidant and anti-inflammatory effects both in vitro and in vivo. Moreover, DHEA improved tendon matrix synthesis and turnover, which are affected by hyperglycemic conditions. DHEA is a potential preventive drug for diabetic tendinopathy.
Collapse
Affiliation(s)
- Shintaro Mukohara
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan
| | - Yutaka Mifune
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan.
| | - Atsuyuki Inui
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan
| | - Hanako Nishimoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan
| | - Takashi Kurosawa
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan
| | - Kohei Yamaura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan
| | - Tomoya Yoshikawa
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan
| |
Collapse
|
12
|
Ackerman JE, Best KT, Muscat SN, Loiselle AE. Metabolic Regulation of Tendon Inflammation and Healing Following Injury. Curr Rheumatol Rep 2021; 23:15. [PMID: 33569739 DOI: 10.1007/s11926-021-00981-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW This review seeks to provide an overview of the role of inflammation and metabolism in tendon cell function, tendinopathy, and tendon healing. We have summarized the state of knowledge in both tendon and enthesis. RECENT FINDINGS Recent advances in the field include a substantial improvement in our understanding of tendon cell biology, including the heterogeneity of the tenocyte environment during homeostasis, the diversity of the cellular milieu during in vivo tendon healing, and the effects of inflammation and altered metabolism on tendon cell function in vitro. In addition, the mechanisms by which altered systemic metabolism, such as diabetes, disrupts tendon homeostasis continue to be better understood. A central conclusion of this review is the critical need to better define fundamental cellular and signaling mechanisms of inflammation and metabolism during tendon homeostasis, tendinopathy, and tendon healing in order to identify therapies to enhance or maintain tendon function.
Collapse
Affiliation(s)
- Jessica E Ackerman
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA
| | - Katherine T Best
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA
| | - Samantha N Muscat
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA
| | - Alayna E Loiselle
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA.
| |
Collapse
|
13
|
Ahmad A, Nawaz MI, Siddiquei MM, Abu El-Asrar AM. Apocynin ameliorates NADPH oxidase 4 (NOX4) induced oxidative damage in the hypoxic human retinal Müller cells and diabetic rat retina. Mol Cell Biochem 2021; 476:2099-2109. [PMID: 33515385 DOI: 10.1007/s11010-021-04071-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022]
Abstract
NADPH oxidase (NOX) is a main producers of reactive oxygen species (ROS) that may contribute to the early pathogenesis of diabetic retinopathy (DR). ROS has harmful effects on endogenous neuro-survival factors brain-derived neurotrophic factor (BDNF) and sirtuin 1 (SIRT1) are necessary for the growth and survival of the retina. The role of NOX isoforms NOX4 in triggering ROS in DR is not clear. Here we determine the protective effects of a plant-derived NOX inhibitor apocynin (APO) on NOX4-induced ROS production which may contribute to the depletion of survival factors BDNF/SIRT1 or cell death in the diabetic retinas. Human retinal Müller glial cells (MGCs) were treated with hypoxia mimetic agent cobalt chloride (CoCl2) in the absence or presence of APO. Molecular analysis demonstrates that NOX4 is upregulated in CoCl2-treated MGCs and in the diabetic retinas. Increased NOX4 was accompanied by the downregulation of BDNF/SIRT1 expression or in the activation of apoptotic marker caspase-3. Whereas, APO treatment downregulates NOX4 and subsequently upregulates BDNF/SIRT1 or alleviate caspase-3 expression. Accordingly, in the diabetic retina we found a positive correlation in NOX4 vs ROS (p = 0.025; R2 = 0.488) and caspase-3 vs ROS (p = 0.04; R2 = 0.428); whereas a negative correlation in BDNF vs ROS (p = 0.009; R2 = 0.596) and SIRT1 vs ROS (p = 0.0003; R2 = 0.817) respectively. Taken together, NOX4-derived ROS could be a main contributor in downregulating BDNF/SIRT1 expression or in the activation of caspase-3. Whereas, APO treatment may minimize the deleterious effects occurring due to hyperglycemia and/or diabetic mimic hypoxic condition in early pathogenesis of DR.
Collapse
Affiliation(s)
- Ajmal Ahmad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Mohd Imtiaz Nawaz
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Ahmed M Abu El-Asrar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|