1
|
Zhao L, Hu S, Davila ML, Yang J, Lin YD, Albanese JM, Lo Y, Wang Y, Kennett MJ, Liu Q, Xiong N. Coordinated co-migration of CCR10 + antibody-producing B cells with helper T cells for colonic homeostatic regulation. Mucosal Immunol 2021; 14:420-430. [PMID: 32773769 PMCID: PMC7870723 DOI: 10.1038/s41385-020-0333-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 02/04/2023]
Abstract
In the intestine, IgA antibody-secreting B cells (IgA-ASCs) and helper T cells coordinate to maintain local homeostasis while their dysregulation could lead to development of intestinal inflammatory diseases. However, mechanisms underlying the coordinated localization and function of the B and T cells into the intestine, particularly the colon, are poorly understood. We herein report the first evidence that the gut-homing chemokine receptor CCR10+ IgA-ASCs form conjugates with helper T cells, preferentially regulatory T cells, at their differentiation sites of gut-associated lymphoid organs for their coordinated co-localization into the colon to promote local homeostasis. In CCR10-knockout mice, defective migration of IgA-ASCs also resulted in defective T-cell migration and homeostasis, and development of inflammatory symptoms in the colon. Antigen-specific interaction of CCR10+ IgA-ASCs and T cells is crucial for their homeostatic establishment in the colon. On the other hand, in IgA-knockout mice, preferential expansion of CCR10+ IgG1-ASCs with regulatory functions compensated for CCR10+ IgA-ASCs to help maintain colonic homeostasis. The preferential expansion of specific subclasses of CCR10+ IgG-ASCs with regulatory functions was also found in asymptomatic IgA-deficient patients. These findings suggest coordinated cell migration as a novel mechanism underlying localization and function of B and T cells in colonic homeostatic regulation.
Collapse
Affiliation(s)
- Luming Zhao
- Center for Molecular Immunology and Infectious Disease, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, 115 Henning Building, University Park, PA 16802, USA
| | - Shaomin Hu
- Center for Molecular Immunology and Infectious Disease, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, 115 Henning Building, University Park, PA 16802, USA.,Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, 111 East 210th Street, Bronx, NY 10467, USA,Current address: Department of Pathology, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | - Micha L. Davila
- Center for Molecular Immunology and Infectious Disease, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, 115 Henning Building, University Park, PA 16802, USA.,Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Jie Yang
- Center for Molecular Immunology and Infectious Disease, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, 115 Henning Building, University Park, PA 16802, USA.,Current address: Precision for Medicine-Houston Site, 2575 West Bellfort, Suite 190, Houston, TX 77054, USA
| | - Yang-Ding Lin
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Joseph M. Albanese
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, 111 East 210th Street, Bronx, NY 10467, USA
| | - Yungtai Lo
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Yanhua Wang
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, 111 East 210th Street, Bronx, NY 10467, USA
| | - Mary J. Kennett
- Center for Molecular Immunology and Infectious Disease, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, 115 Henning Building, University Park, PA 16802, USA
| | - Qiang Liu
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, 111 East 210th Street, Bronx, NY 10467, USA
| | - Na Xiong
- Center for Molecular Immunology and Infectious Disease, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, 115 Henning Building, University Park, PA 16802, USA.,Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA,Department of Medicine-Division of Dermatology and Cutaneous Surgery, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.,Correspondence to: Na Xiong, Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229. ; Tel: 2104505362
| |
Collapse
|
2
|
Yang Y, Kang X, Hu S, Chen B, Xie Y, Song B, Zhang Q, Wu H, Ou Z, Xian Y, Fan Y, Li X, Lai L, Sun X. CRISPR/Cas9-mediated β-globin gene knockout in rabbits recapitulates human β-thalassemia. J Biol Chem 2021; 296:100464. [PMID: 33639162 PMCID: PMC8024976 DOI: 10.1016/j.jbc.2021.100464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/09/2021] [Accepted: 02/23/2021] [Indexed: 01/19/2023] Open
Abstract
β-thalassemia, an autosomal recessive blood disorder that reduces the production of hemoglobin, is majorly caused by the point mutation of the HBB gene resulting in reduced or absent β-globin chains of the hemoglobin tetramer. Animal models recapitulating both the phenotype and genotype of human disease are valuable in the exploration of pathophysiology and for in vivo evaluation of novel therapeutic treatments. The docile temperament, short vital cycles, and low cost of rabbits make them an attractive animal model. However, β-thalassemia rabbit models are currently unavailable. Here, using CRISPR/Cas9-mediated genome editing, we point mutated the rabbit β-globin gene HBB2 with high efficiency and generated a β-thalassemia rabbit model. Hematological and histological analyses demonstrated that the genotypic mosaic F0 displayed a mild phenotype of anemia, and the heterozygous F1 exhibited typical characteristics of β-thalassemia. Whole-blood transcriptome analysis revealed that the gene expression was altered in HBB2-targeted when compared with WT rabbits. And the highly expressed genes in HBB2-targeted rabbits were enriched in lipid and iron metabolism, innate immunity, and hematopoietic processes. In conclusion, using CRISPR-mediated HBB2 knockout, we have created a β-thalassemia rabbit model that accurately recapitulates the human disease phenotype. We believe this tool will be valuable in advancing the investigation of pathogenesis and novel therapeutic targets of β-thalassemia and associated complications.
Collapse
Affiliation(s)
- Yi Yang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiangjin Kang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shiqi Hu
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bangzhu Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yingjun Xie
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bing Song
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Quanjun Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Han Wu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhanhui Ou
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yexing Xian
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yong Fan
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoping Li
- Key Laboratory for Stem Cells and Tissue Engineering, Center for Stem Cell Biology and Tissue Engineering, Zhongshan Medical School, Sun Yat-Sen University, Ministry of Education, Guangzhou, China.
| | - Liangxue Lai
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | - Xiaofang Sun
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Alexandres C, Basha B, King RL, Howard MT, Reichard KK. p53 immunohistochemistry discriminates between pure erythroid leukemia and reactive erythroid hyperplasia. J Hematop 2021. [DOI: 10.1007/s12308-020-00431-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AbstractPure erythroid leukemia (PEL) is a rare, aggressive subtype of acute myeloid leukemia with a poor prognosis. The diagnosis of PEL is often medically urgent, quite challenging, and is typically a diagnosis of exclusion requiring meticulous distinction from non-neoplastic erythroid proliferations, particularly florid erythroid hyperplasia/regeneration. Given the frequency of TP53 mutations in the molecular signature of PEL, we hypothesize that differential p53 expression by immunohistochemistry (IHC) may be useful in distinguishing PEL versus non-neoplastic erythroid conditions. We performed p53 IHC on 5 normal bone marrow, 46 reactive erythroid proliferations, and 27 PEL cases. We assessed the positivity and intensity of nuclear staining in pronormoblasts and basophilic normoblasts using a 0–3+ scale with 0 being absent (with internal positive controls) and 3 being strong nuclear positivity. A total of 26/27 PEL cases showed strong, uniform, diffuse intense staining by the neoplastic pronormoblasts versus 0/5 and 0/46 normal and reactive controls, respectively. The control cases show various staining patterns ranging from 0 to 3+ in scattered erythroid precursor cells. Uniform, strong p53 positivity is unique to PEL and discriminates this entity from a benign erythroid mimic. Thus, p53 IHC may be a useful marker in urgent medical cases to assist in the confirmation of a malignant PEL diagnosis while awaiting the results of additional ancillary studies such as cytogenetics.
Collapse
|
4
|
Eskandari M, Shi Y, Liu J, Albanese J, Goel S, Verma A, Wang Y. The expression of MDM2, MDM4, p53 and p21 in myeloid neoplasms and the effect of MDM2/MDM4 dual inhibitor. Leuk Lymphoma 2020; 62:167-175. [PMID: 32924682 DOI: 10.1080/10428194.2020.1817441] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
p53 together with its downstream product p21 plays an important role in tumorigenesis development. MDM2 and MDM4 are two p53 regulators. We studied the expression of p53, p21, MDM2, and MDM4 in a total of 120 cases of myeloid neoplasms including MDS, AML or MDS/MPN, and control, using single and double immunohistochemical stains. We found TP53 mutations had a worse outcome in patients with AML/MDS, and p53 expression detected by immunohistochemistry had a similar prognostic value. p21 expression was strongly related to TP53 mutation status, with loss of expression in almost all TP53 mutated cases. MDM2 and MDM4 were highly expressed in hematopoietic cells in both benign and neoplastic cells. MDM2/p53 double positive cells exceeded MDM4/p53 double positive cells in neoplastic cases. Finally, we observed that p21 protein expression was up regulated upon the use of ALRN-6924 (Aileron) while no significant changes were seen in p53, MDM2 and MDM4 expression.
Collapse
Affiliation(s)
| | - Yang Shi
- Department of Pathology, Montefiore Medical Center, New York, NY, USA
| | - John Liu
- Rensselaer Polytechnic Institute, Troy, MI, USA
| | - Joseph Albanese
- Department of Pathology, Montefiore Medical Center, New York, NY, USA
| | - Swati Goel
- Department of Oncology, Montefiore Einstein Center for Cancer Care, New York, NY, USA
| | - Amit Verma
- Department of Oncology, Montefiore Einstein Center for Cancer Care, New York, NY, USA
| | - Yanhua Wang
- Department of Pathology, Montefiore Medical Center, New York, NY, USA
| |
Collapse
|
5
|
Lambert MW. The functional importance of lamins, actin, myosin, spectrin and the LINC complex in DNA repair. Exp Biol Med (Maywood) 2019; 244:1382-1406. [PMID: 31581813 PMCID: PMC6880146 DOI: 10.1177/1535370219876651] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Three major proteins in the nucleoskeleton, lamins, actin, and spectrin, play essential roles in maintenance of nuclear architecture and the integrity of the nuclear envelope, in mechanotransduction and mechanical coupling between the nucleoskeleton and cytoskeleton, and in nuclear functions such as regulation of gene expression, transcription and DNA replication. Less well known, but critically important, are the role these proteins play in DNA repair. The A-type and B-type lamins, nuclear actin and myosin, spectrin and the LINC (linker of nucleoskeleton and cytoskeleton) complex each function in repair of DNA damage utilizing various repair pathways. The lamins play a role in repair of DNA double-strand breaks (DSBs) by nonhomologous end joining (NHEJ) or homologous recombination (HR). Actin is involved in repair of DNA DSBs and interacts with myosin in facilitating relocalization of these DSBs in heterochromatin for HR repair. Nonerythroid alpha spectrin (αSpII) plays a critical role in repair of DNA interstrand cross-links (ICLs) where it acts as a scaffold in recruitment of repair proteins to sites of damage and is important in the initial damage recognition and incision steps of the repair process. The LINC complex contributes to the repair of DNA DSBs and ICLs. This review will address the important functions of these proteins in the DNA repair process, their mechanism of action, and the profound impact a defect or deficiency in these proteins has on cellular function. The critical roles of these proteins in DNA repair will be further emphasized by discussing the human disorders and the pathophysiological changes that result from or are related to deficiencies in these proteins. The demonstrated function for each of these proteins in the DNA repair process clearly indicates that there is another level of complexity that must be considered when mechanistically examining factors crucial for DNA repair.
Collapse
Affiliation(s)
- Muriel W Lambert
- Department of Pathology, Immunology and Laboratory
Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
6
|
Khamesipour A, Kagaris D. Speeding up the discovery of combinations of differentially expressed genes for disease prediction and classification. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 170:69-80. [PMID: 30712605 DOI: 10.1016/j.cmpb.2019.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND AND OBJECTIVE Finding combinations (i.e., pairs, or more generally, q-tuples with q ≥ 2) of genes whose behavior as a group differs significantly between two classes has received a lot of attention in the quest for the discovery of simple, accurate, and easily interpretable decision rules for disease classification and prediction. For example, the Top Scoring Pair (TSP) method seeks to find pairs of genes so that the probability of the reversal of the relative ranking of the expression levels of the genes in the two classes is maximized. The computational cost of finding a q-tuple of genes that scores highest under a given metric is O(Gq), where G is the total number of genes. This cost is often problematic or prohibitive in practice (even for q=2), as the number of genes G is often in the order of tens of thousands. METHODS In this paper, we show that this computational cost can be significantly reduced by excluding from consideration genes whose behavior is almost identical in the two classes and therefore their inclusion in any q-tuple is rather non-informative. Our criterion for the exclusion of genes is supported by a statistically robust metric, the Area Under the Curve (AUC) of the corresponding Receiver Operating Characteristic (ROC) curve. By filtering out genes whose AUC value is below a user-chosen threshold, as determined by a procedure that we describe in the paper, dramatic reductions in the run times are obtained while maintaining the same classification accuracy. RESULTS We have experimentally verified the gains of this approach on several case studies involving ovarian, colon, leukemia, breast and prostate cancers, and diffuse large b-cell lymphoma. CONCLUSIONS The proposed method is not only faster (for example, we observed an average 78.65% reduction over the run time of TSP) while maintaining the same classification accuracy, but it can even result in better classification accuracy due to its inherent ability to avoid the so-called "pivot" (non-informative) genes that may intrude in q-tuples chosen otherwise.
Collapse
Affiliation(s)
| | - Dimitri Kagaris
- ECE Dept., Southern Illinois University, Carbondale, IL 62901, USA.
| |
Collapse
|
7
|
Hu S, Jue D, Albanese J, Wang Y, Liu Q. Utilization of spectrins βI and βIII in diagnosis of hepatocellular carcinoma. Ann Diagn Pathol 2019; 39:86-91. [PMID: 30798076 DOI: 10.1016/j.anndiagpath.2019.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 02/08/2019] [Indexed: 12/24/2022]
Abstract
Spectrins are a group of cytoskeletal proteins which participate in many important cellular functions. It has been suggested that loss of spectrin isoforms may be associated with tumorigenesis of lymphoma, leukemia, gastric cancer and hepatocellular carcinoma (HCC). We recently reported that βI spectrin expression was present in normal hepatocytes but lost in HCC cells, which suggested that spectrins may be helpful markers in diagnosis of HCC. In this study, using immunohistochemical staining, we further investigated the expression pattern of four spectrin isoforms (αII, βI-III) on different benign and malignant liver tumors including focal nodular hyperplasia (FNH), hepatic adenoma (HA), HCC, and cholangiocarcinoma (CC). The results revealed that βI spectrin was moderately to strongly positive in FNH and HA tissues, but was only weakly positive or lost in HCC cases and was weakly positive in all CC cases. In addition, the βIII spectrin, majority of which was moderately positive in both FNH and HA tissues, was mostly lost in poorly differentiated HCC but remained at least moderately positive in most CC cases. These results suggest that spectrins βI and βIII may be used to differentiate well differentiated HCC from FNH or HA, and poorly differentiated HCC from CC, respectively.
Collapse
Affiliation(s)
- Shaomin Hu
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10467, United States of America
| | - Deborah Jue
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10467, United States of America
| | - Joseph Albanese
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10467, United States of America
| | - Yanhua Wang
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10467, United States of America.
| | - Qiang Liu
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10467, United States of America.
| |
Collapse
|
8
|
Lambert MW. Spectrin and its interacting partners in nuclear structure and function. Exp Biol Med (Maywood) 2019; 243:507-524. [PMID: 29557213 DOI: 10.1177/1535370218763563] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nonerythroid αII-spectrin is a structural protein whose roles in the nucleus have just begun to be explored. αII-spectrin is an important component of the nucleoskelelton and has both structural and non-structural functions. Its best known role is in repair of DNA ICLs both in genomic and telomeric DNA. αII-spectrin aids in the recruitment of repair proteins to sites of damage and a proposed mechanism of action is presented. It interacts with a number of different groups of proteins in the nucleus, indicating it has roles in additional cellular functions. αII-spectrin, in its structural role, associates/co-purifies with proteins important in maintaining the architecture and mechanical properties of the nucleus such as lamin, emerin, actin, protein 4.1, nuclear myosin, and SUN proteins. It is important for the resilience and elasticity of the nucleus. Thus, αII-spectrin's role in cellular functions is complex due to its structural as well as non-structural roles and understanding the consequences of a loss or deficiency of αII-spectrin in the nucleus is a significant challenge. In the bone marrow failure disorder, Fanconi anemia, there is a deficiency in αII-spectrin and, among other characteristics, there is defective DNA repair, chromosome instability, and congenital abnormalities. One may speculate that a deficiency in αII-spectrin plays an important role not only in the DNA repair defect but also in the congenital anomalies observed in Fanconi anemia , particularly since αII-spectrin has been shown to be important in embryonic development in a mouse model. The dual roles of αII-spectrin in the nucleus in both structural and non-structural functions make this an extremely important protein which needs to be investigated further. Such investigations should help unravel the complexities of αII-spectrin's interactions with other nuclear proteins and enhance our understanding of the pathogenesis of disorders, such as Fanconi anemia , in which there is a deficiency in αII-spectrin. Impact statement The nucleoskeleton is critical for maintaining the architecture and functional integrity of the nucleus. Nonerythroid α-spectrin (αIISp) is an essential nucleoskeletal protein; however, its interactions with other structural and non-structural nuclear proteins and its functional importance in the nucleus have only begun to be explored. This review addresses these issues. It describes αIISp's association with DNA repair proteins and at least one proposed mechanism of action for its role in DNA repair. Specific interactions of αIISp with other nucleoskeletal proteins as well as its important role in the biomechanical properties of the nucleus are reviewed. The consequences of loss of αIISp, in disorders such as Fanconi anemia, are examined, providing insights into the profound impact of this loss on critical processes known to be abnormal in FA, such as development, carcinogenesis, cancer progression and cellular functions dependent upon αIISp's interactions with other nucleoskeletal proteins.
Collapse
Affiliation(s)
- Muriel W Lambert
- Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
9
|
Majerska J, Feretzaki M, Glousker G, Lingner J. Transformation-induced stress at telomeres is counteracted through changes in the telomeric proteome including SAMHD1. Life Sci Alliance 2018; 1:e201800121. [PMID: 30456372 PMCID: PMC6238619 DOI: 10.26508/lsa.201800121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 12/13/2022] Open
Abstract
The authors apply telomeric chromatin analysis to identify factors that accumulate at telomeres during cellular transformation, promoting telomere replication and repair and counteracting oncogene-borne telomere replication stress. Telomeres play crucial roles during tumorigenesis, inducing cellular senescence upon telomere shortening and extensive chromosome instability during telomere crisis. However, it has not been investigated if and how cellular transformation and oncogenic stress alter telomeric chromatin composition and function. Here, we transform human fibroblasts by consecutive transduction with vectors expressing hTERT, the SV40 early region, and activated H-RasV12. Pairwise comparisons of the telomeric proteome during different stages of transformation reveal up-regulation of proteins involved in chromatin remodeling, DNA repair, and replication at chromosome ends. Depletion of several of these proteins induces telomere fragility, indicating their roles in replication of telomeric DNA. Depletion of SAMHD1, which has reported roles in DNA resection and homology-directed repair, leads to telomere breakage events in cells deprived of the shelterin component TRF1. Thus, our analysis identifies factors, which accumulate at telomeres during cellular transformation to promote telomere replication and repair, resisting oncogene-borne telomere replication stress.
Collapse
Affiliation(s)
- Jana Majerska
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marianna Feretzaki
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Galina Glousker
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Joachim Lingner
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
10
|
Lambert MW. Nuclear alpha spectrin: Critical roles in DNA interstrand cross-link repair and genomic stability. Exp Biol Med (Maywood) 2016; 241:1621-38. [PMID: 27480253 PMCID: PMC4999628 DOI: 10.1177/1535370216662714] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Non-erythroid alpha spectrin (αIISp) is a structural protein which we have shown is present in the nucleus of human cells. It interacts with a number of nuclear proteins such as actin, lamin, emerin, chromatin remodeling factors, and DNA repair proteins. αIISp's interaction with DNA repair proteins has been extensively studied. We have demonstrated that nuclear αIISp is critical in DNA interstrand cross-link (ICL) repair in S phase, in both genomic (non-telomeric) and telomeric DNA, and in maintenance of genomic stability following ICL damage to DNA. We have proposed that αIISp acts as a scaffold aiding to recruit repair proteins to sites of damage. This involvement of αIISp in ICL repair and telomere maintenance after ICL damage represents new and critical functions for αIISp. These studies have led to development of a model for the role of αIISp in DNA ICL repair. They have been aided by examination of cells from patients with Fanconi anemia (FA), a repair-deficient genetic disorder in which a deficiency in αIISp leads to defective ICL repair in genomic and telomeric DNA, telomere dysfunction, and chromosome instability following DNA ICL damage. We have shown that loss of αIISp in FA cells is due to increased breakdown by the protease, µ-calpain. Importantly, we have demonstrated that this deficiency can be corrected by knockdown of µ-calpain and restoring αIISp levels to normal. This corrects a number of the phenotypic deficiencies in FA after ICL damage. These studies suggest a new and unexplored direction for therapeutically restoring genomic stability in FA cells and for correcting numerous phenotypic deficiencies occurring after ICL damage. Developing a more in-depth understanding of the importance of the interaction of αIISp with other nuclear proteins could significantly enhance our knowledge of the consequences of loss of αIISp on critical nuclear processes.
Collapse
Affiliation(s)
- Muriel W Lambert
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
11
|
Lambert MW. Functional Significance of Nuclear α Spectrin. J Cell Biochem 2016; 116:1816-30. [PMID: 25757157 DOI: 10.1002/jcb.25123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 11/11/2022]
Abstract
Nonerythroid alpha spectrin (αIISp) interacts in the nucleus with an array of different proteins indicating its involvement in a number of diverse functions. However, the significance of these interactions and their functional importance has been a relatively unexplored area. The best documented role of nuclear αIISp is in DNA repair where it is critical for repair of DNA interstrand cross-links (ICLs), acting as a scaffold recruiting proteins to sites of damage in genomic and telomeric DNA. A deficiency in αIISp can importantly impact DNA ICL repair as is seen in cells from patients with the genetic disorder, Fanconi anemia (FA), where loss of αIISp leads to not only defects in repair of both genomic and telomeric DNA but also to telomere dysfunction and chromosome instability. This previously unexplored link between αIISp and telomere function is important in developing an understanding of maintenance of genomic stability after ICL damage. In FA cells, these defects in chromosome instability after ICL damage can be corrected when levels of αIISp are returned to normal by knocking down μ-calpain, a protease which cleaves αIISp. These studies suggest a new direction for correcting a number of the phenotypic defects in FA and could serve as a basis for therapeutic intervention. More in depth, examination of the interactions of αIISp with other proteins in the nucleus is of major importance in development of insights into the interacting key elements involved in the diverse processes occurring in the nucleus and the consequences loss of αIISp has on them.
Collapse
Affiliation(s)
- Muriel W Lambert
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue, Newark, New Jersey, 07103
| |
Collapse
|
12
|
Lee YT, de Vasconcellos JF, Byrnes C, Kaushal M, Rabel A, Tumburu L, Allwardt JM, Miller JL. Erythroid-Specific Expression of LIN28A Is Sufficient for Robust Gamma-Globin Gene and Protein Expression in Adult Erythroblasts. PLoS One 2015; 10:e0144977. [PMID: 26675483 PMCID: PMC4684222 DOI: 10.1371/journal.pone.0144977] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/25/2015] [Indexed: 01/10/2023] Open
Abstract
Increasing fetal hemoglobin (HbF) levels in adult humans remains an active area in hematologic research. Here we explored erythroid-specific LIN28A expression for its effect in regulating gamma-globin gene expression and HbF levels in cultured adult erythroblasts. For this purpose, lentiviral transduction vectors were produced with LIN28A expression driven by erythroid-specific gene promoter regions of the human KLF1 or SPTA1 genes. Transgene expression of LIN28A with a linked puromycin resistance marker was restricted to the erythroid lineage as demonstrated by selective survival of erythroid colonies (greater than 95% of all colonies). Erythroblast LIN28A over-expression (LIN28A-OE) did not significantly affect proliferation or inhibit differentiation. Greater than 70% suppression of total let-7 microRNA levels was confirmed in LIN28A-OE cells. Increases in gamma-globin mRNA and protein expression with HbF levels reaching 30-40% were achieved. These data suggest that erythroblast targeting of LIN28A expression is sufficient for increasing fetal hemoglobin expression in adult human erythroblasts.
Collapse
Affiliation(s)
- Y. Terry Lee
- Molecular Genomics and Therapeutics Section, Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jaira F. de Vasconcellos
- Molecular Genomics and Therapeutics Section, Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Colleen Byrnes
- Molecular Genomics and Therapeutics Section, Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Megha Kaushal
- Molecular Genomics and Therapeutics Section, Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Antoinette Rabel
- Molecular Genomics and Therapeutics Section, Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Laxminath Tumburu
- Molecular Genomics and Therapeutics Section, Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joshua M. Allwardt
- Molecular Genomics and Therapeutics Section, Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jeffery L. Miller
- Molecular Genomics and Therapeutics Section, Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|