1
|
Schirripa A, Sexl V, Kollmann K. Cyclin-dependent kinase inhibitors in malignant hematopoiesis. Front Oncol 2022; 12:916682. [PMID: 36033505 PMCID: PMC9403899 DOI: 10.3389/fonc.2022.916682] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
The cell-cycle is a tightly orchestrated process where sequential steps guarantee cellular growth linked to a correct DNA replication. The entire cell division is controlled by cyclin-dependent kinases (CDKs). CDK activation is balanced by the activating cyclins and CDK inhibitors whose correct expression, accumulation and degradation schedule the time-flow through the cell cycle phases. Dysregulation of the cell cycle regulatory proteins causes the loss of a controlled cell division and is inevitably linked to neoplastic transformation. Due to their function as cell-cycle brakes, CDK inhibitors are considered as tumor suppressors. The CDK inhibitors p16INK4a and p15INK4b are among the most frequently altered genes in cancer, including hematopoietic malignancies. Aberrant cell cycle regulation in hematopoietic stem cells (HSCs) bears severe consequences on hematopoiesis and provokes hematological disorders with a broad array of symptoms. In this review, we focus on the importance and prevalence of deregulated CDK inhibitors in hematological malignancies.
Collapse
|
2
|
Cruciani S, Garroni G, Pala R, Barcessat ARP, Facchin F, Ventura C, Fozza C, Maioli M. Melatonin finely tunes proliferation and senescence in hematopoietic stem cells. Eur J Cell Biol 2022; 101:151251. [PMID: 35772322 DOI: 10.1016/j.ejcb.2022.151251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022] Open
Abstract
Human hematopoietic stem/progenitor cells (HSPCs) are pluripotent cells that gradually lose their self-renewal and regenerative potential, to give rise to mature cells of the hematopoietic system by differentiation. HSPC infusion is used to restore hematopoietic function in patients with a variety of onco-hematologic and immune-mediated disorders. The functionality of these cells is therefore of great importance to ensure the homeostasis of the hematopoietic system. Melatonin plays an important role as immunomodulatory and oncostatic hormone. In the present manuscript, we aimed at evaluating the activity of melatonin in modulating HSPC senescence, in the attempt to improve their hemopoietic regenerative potential. We exposed HSPCs to melatonin, in different conditions, and then analyzed the expression of genes regulating cell cycle and cell senescence. Moreover, we assessed cell senescence by β-galactosidase and telomerase activity. Our results showed the ability of melatonin to counteract HSPC senescence, thus paving the way for enhanced efficiency in their clinical application.
Collapse
Affiliation(s)
- Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; Consorzio Interuniversitario "Istituto Nazionale Biostrutture e Biosistemi" (INBB), Viale delle Medaglie d'Oro 305, 00136, Roma (RM).
| | - Giuseppe Garroni
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy.
| | - Renzo Pala
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy.
| | - Ana Rita Pinheiro Barcessat
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; Health and Biological Sciences Department, Federal University of Amapá, Macapá, Brazil.
| | - Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - Carlo Ventura
- National Laboratory of Molecular Biology and Stem Cell Engineering, Eldor Lab, Istituto Nazionale di Biostrutture e Biosistemi (INBB), Innovation Accelerators, CNR, Bologna 40129, Italy.
| | - Claudio Fozza
- Blood Diseases Department of Clinical and Experimental Medicine University of Sassari, 07100 Sassari, Italy.
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; Consorzio Interuniversitario "Istituto Nazionale Biostrutture e Biosistemi" (INBB), Viale delle Medaglie d'Oro 305, 00136, Roma (RM); Center for Developmental Biology and Reprogramming (CEDEBIOR), Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.
| |
Collapse
|
3
|
Soni P, Ghufran MS, Olakkaran S, Puttaswamygowda GH, Duddukuri GR, Kanade SR. Epigenetic alterations induced by aflatoxin B 1: An in vitro and in vivo approach with emphasis on enhancer of zeste homologue-2/p21 axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143175. [PMID: 33131875 DOI: 10.1016/j.scitotenv.2020.143175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/21/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
The potent environmental toxicant aflatoxin B1 (AFB1), is a group I carcinogen reported to induce the expression of many cancer associated proteins. Epigenetic alterations such as DNA methylation and histone modifications play vital role in AFB1-mediated carcinogenesis. These epigenetic modifications may result in the recruitment of specific proteins and transcription factors to the promoter region and regulate gene expression. Here we show that AFB1, at lower concentrations (100 and 1000 nM) induced proliferation in L-132 and HaCaT cells with activation of the Akt pathway, which ultimately steered abnormal proliferation and transmission of survival signals. We demonstrated a significant reduction in the expression of p21 with a remarkable increase in the expression of cyclin D1 that correlated with increased methylation of CpG dinucleotides in p21 proximal promoter, while cyclin D1 promoter remained unmethylated. The chromatin immunoprecipitation results revealed the enrichment of DNMT3a and H3K27me3 repressive marks on the p21 proximal promoter where EZH2 mediated H3K27me3 mark enhanced the binding of DNMT3a at the promoter and further contributed to the transcriptional inactivation. The overall study provided the novel information on the impact of AFB1 on p21 inactivation via EZH2 and promoter methylation which is known to be a vital process in proliferation. Furthermore, AFB1 induced the expression of EZH2 analogue protein E(z), cyclin D1 analogue cyclin D and decreased the expression of p21 analogue Dacapo in Drosophila melanogaster. Interestingly, the aggressiveness in their expression upon re-exposure in successive generations suggested first hand perspectives on multigenerational epigenetic memory.
Collapse
Affiliation(s)
- Priyanka Soni
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periye, Kasargod 671316, Kerala, India
| | - Md Sajid Ghufran
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periye, Kasargod 671316, Kerala, India
| | - Shilpa Olakkaran
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periye, Kasargod 671316, Kerala, India
| | | | - Govinda Rao Duddukuri
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periye, Kasargod 671316, Kerala, India
| | - Santosh R Kanade
- Department of Plant Science, School of Life Science, University of Hyderabad, Prof. C. R. Rao Road Gachibowli, Hyderabad 500046, India.
| |
Collapse
|
4
|
Rodríguez-García A, Morales ML, Garrido-García V, García-Baquero I, Leivas A, Carreño-Tarragona G, Sánchez R, Arenas A, Cedena T, Ayala RM, Bautista JM, Martínez-López J, Linares M. Protein Carbonylation in Patients with Myelodysplastic Syndrome: An Opportunity for Deferasirox Therapy. Antioxidants (Basel) 2019; 8:E508. [PMID: 31652983 PMCID: PMC6912333 DOI: 10.3390/antiox8110508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 12/21/2022] Open
Abstract
Control of oxidative stress in the bone marrow (BM) is key for maintaining the interplay between self-renewal, proliferation, and differentiation of hematopoietic cells. Breakdown of this regulation can lead to diseases characterized by BM failure such as the myelodysplastic syndromes (MDS). To better understand the role of oxidative stress in MDS development, we compared protein carbonylation as an indicator of oxidative stress in the BM of patients with MDS and control subjects, and also patients with MDS under treatment with the iron chelator deferasirox (DFX). As expected, differences in the pattern of protein carbonylation were observed in BM samples between MDS patients and controls, with an increase in protein carbonylation in the former. Strikingly, patients under DFX treatment had lower levels of protein carbonylation in BM with respect to untreated patients. Proteomic analysis identified four proteins with high carbonylation levels in MDS BM cells. Finally, as oxidative stress-related signaling pathways can modulate the cell cycle through p53, we analyzed the expression of the p53 target gene p21 in BM cells, finding that it was significantly upregulated in patients with MDS and was significantly downregulated after DFX treatment. Overall, our results suggest that the fine-tuning of oxidative stress levels in the BM of patients with MDS might control malignant progression.
Collapse
Affiliation(s)
- Alba Rodríguez-García
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
| | - María Luz Morales
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
| | - Vanesa Garrido-García
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
| | - Irene García-Baquero
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
| | - Alejandra Leivas
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
| | - Gonzalo Carreño-Tarragona
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
| | - Ricardo Sánchez
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
| | - Alicia Arenas
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
| | - Teresa Cedena
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
| | - Rosa María Ayala
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
| | - José M Bautista
- Department of Biochemistry and Molecular Biology and Research Institute Hospital 12 de Octubre, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain.
| | - Joaquín Martínez-López
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
- Department of Medicine, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain.
| | - María Linares
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
- Department of Biochemistry and Molecular Biology and Research Institute Hospital 12 de Octubre, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain.
| |
Collapse
|
5
|
DNA Methylation Events as Markers for Diagnosis and Management of Acute Myeloid Leukemia and Myelodysplastic Syndrome. DISEASE MARKERS 2017; 2017:5472893. [PMID: 29038614 PMCID: PMC5606093 DOI: 10.1155/2017/5472893] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/17/2017] [Accepted: 07/30/2017] [Indexed: 01/18/2023]
Abstract
During the onset and progression of hematological malignancies, many changes occur in cellular epigenome, such as hypo- or hypermethylation of CpG islands in promoter regions. DNA methylation is an epigenetic modification that regulates gene expression and is a key event for tumorigenesis. The continuous search for biomarkers that signal early disease, indicate prognosis, and act as therapeutic targets has led to studies investigating the role of DNA in cancer onset and progression. This review focuses on DNA methylation changes as potential biomarkers for diagnosis, prognosis, response to treatment, and early toxicity in acute myeloid leukemia and myelodysplastic syndrome. Here, we report that distinct changes in DNA methylation may alter gene function and drive malignant cellular transformation during several stages of leukemogenesis. Most of these modifications occur at an early stage of disease and may predict myeloid/lymphoid transformation or response to therapy, which justifies its use as a biomarker for disease onset and progression. Methylation patterns, or its dynamic change during treatment, may also be used as markers for patient stratification, disease prognosis, and response to treatment. Further investigations of methylation modifications as therapeutic biomarkers, which may correlate with therapeutic response and/or predict treatment toxicity, are still warranted.
Collapse
|
6
|
Jiang D, Li Y, Hong Q, Shen Y, Xu C, Xu Y, Zhu H, Dai D, Ouyang G, Duan S. DNA methylation and leukemia susceptibility in China: Evidence from an updated meta-analysis. Mol Clin Oncol 2016; 5:193-207. [PMID: 27588182 PMCID: PMC4997969 DOI: 10.3892/mco.2016.959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 05/20/2016] [Indexed: 12/16/2022] Open
Abstract
Mounting evidence supports a role for DNA methylation in the pathogenesis of leukemia; however, there no overview of these results in the Chinese population. The present study performed a comprehensive meta-analysis to establish candidate genes with an altered methylation status in Chinese leukemia patients. Eligible studies were identified through searching the National Center of Biotechnology Information PubMed and Wanfang databases. Studies were pooled and overall odds ratios with corresponding confidence intervals were calculated. A total of 4,325 leukemia patients and 2,010 controls from 94 studies on 53 genes were included in this meta-analysis, and 47 genes were found to be aberrantly methylated in leukemia patients. A further subgroup meta-analysis by leukemia subtype demonstrated that hypermethylation of 5 genes, namely cyclin-dependent kinase (CDKN)2A, DNA-binding protein inhibitor-4, CDKN2B, glioma pathogenesis-related protein 1 and p73, contributed to the risk of various subtypes of leukemia. In addition, a strong association between CDKN2A and leukemia was identified in Chinese (P<0.00001) but not in European patients. The aberrantly methylated genes identified in the present meta-analysis may help elucidate the mechanisms underlying the development of leukemia in Chinese patients.
Collapse
Affiliation(s)
- Danjie Jiang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yirun Li
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Qingxiao Hong
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yusheng Shen
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Chunjing Xu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yan Xu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Huangkai Zhu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Dongjun Dai
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Guifang Ouyang
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
7
|
Waespe N, Van Den Akker M, Klaassen RJ, Lieberman L, Irwin MS, Ali SS, Abdelhaleem M, Zlateska B, Liebman M, Cada M, Schechter T, Dror Y. Response to treatment with azacitidine in children with advanced myelodysplastic syndrome prior to hematopoietic stem cell transplantation. Haematologica 2016; 101:1508-1515. [PMID: 27540140 DOI: 10.3324/haematol.2016.145821] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 08/18/2016] [Indexed: 12/14/2022] Open
Abstract
Advanced myelodysplastic syndrome harbors a high risk of progression to acute myeloid leukemia and poor prognosis. In children, there is no established treatment to prevent or delay progression to leukemia prior to hematopoietic stem cell transplantation. Azacitidine is a hypomethylating agent, which was shown to slow progression to leukemia in adults with myelodysplastic syndrome. There is little data on the efficacy of azacitidine in children. We reviewed 22 pediatric patients with advanced myelodysplastic syndrome from a single center, diagnosed between January 2000 and December 2015. Of those, eight patients received off-label azacitidine before hematopoietic stem cell transplantation. A total of 31 cycles were administered and modification or delay occurred in four of them due to cytopenias, infection, nausea/vomiting, and transient renal impairment. Bone marrow blast percentages in azacitidine-treated patients decreased significantly from a median of 15% (range 9-31%) at the start of treatment to 5.5% (0-12%, P=0.02) before hematopoietic stem cell transplantation. Following azacitidine treatment, four patients (50%) achieved marrow remission, and none progressed. In contrast, three untreated patients (21.4%) had progressive disease characterized by >50% increase in blast counts or progression to leukemia. Azacitidine-treated patients had significantly increased 4-year event-free survival (P=0.04); predicted 4-year overall survival was 100% versus 69.3% in untreated patients (P=0.1). In summary, azacitidine treatment prior to hematopoietic stem cell transplantation was well tolerated in pediatric patients with advanced myelodysplastic syndrome, led to partial or complete bone marrow response in seven of eight patients (87.5%), and correlated with superior event-free survival in this cohort.
Collapse
Affiliation(s)
- Nicolas Waespe
- Marrow Failure and Myelodysplasia Program, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada.,Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Machiel Van Den Akker
- Marrow Failure and Myelodysplasia Program, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada.,Pediatric Hematology/Oncology, UZ Brussel, Jette, Belgium
| | - Robert J Klaassen
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Lani Lieberman
- Department of Laboratory Medicine, University Health Network, Toronto, Canada
| | - Meredith S Irwin
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada
| | - Salah S Ali
- Bone Marrow Transplantation Program, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada
| | - Mohamed Abdelhaleem
- Department of Pediatric Laboratory Medicine, Division of Hematopathology, The Hospital for Sick Children, Toronto, Canada
| | - Bozana Zlateska
- Marrow Failure and Myelodysplasia Program, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada.,Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Mira Liebman
- Marrow Failure and Myelodysplasia Program, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada
| | - Michaela Cada
- Marrow Failure and Myelodysplasia Program, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada
| | - Tal Schechter
- Bone Marrow Transplantation Program, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada
| | - Yigal Dror
- Marrow Failure and Myelodysplasia Program, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada .,Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Institute of Medical Science, University of Toronto, Canada
| |
Collapse
|
8
|
Zhang Z, Chang CK, He Q, Guo J, Tao Y, Wu LY, Xu F, Wu D, Zhou LY, Su JY, Song LX, Xiao C, Li X. Increased PD-1/STAT1 ratio may account for the survival benefit in decitabine therapy for lower risk myelodysplastic syndrome. Leuk Lymphoma 2016; 58:969-978. [DOI: 10.1080/10428194.2016.1219903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Zhao Y, Wu D, Fei C, Guo J, Gu S, Zhu Y, Xu F, Zhang Z, Wu L, Li X, Chang C. Down-regulation of Dicer1 promotes cellular senescence and decreases the differentiation and stem cell-supporting capacities of mesenchymal stromal cells in patients with myelodysplastic syndrome. Haematologica 2014; 100:194-204. [PMID: 25361944 DOI: 10.3324/haematol.2014.109769] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Although it has been reported that mesenchymal stromal cells are unable to provide sufficient hematopoietic support in myelodysplastic syndrome, the underlying mechanisms remain elusive. In this study, we found that mesenchymal stromal cells from patients with myelodysplastic syndrome displayed a significant increase in senescence, as evidenced by their decreased proliferative capacity, flattened morphology and increased expression of SA-β-gal and p21. Senescent mesenchymal stromal cells from patients had decreased differentiation potential and decreased stem cell support capacity. Gene knockdown of Dicer1, which was down-regulated in mesenchymal stromal cells from patients, induced senescence. The differentiation and stem cell-supporting capacities were significantly inhibited by Dicer1 knockdown. Overexpression of Dicer1 in mesenchymal stromal cells from patients reversed cellular senescence and enhanced stem cell properties. Furthermore, we identified reduced expression in the microRNA-17 family (miR-17-5p, miR-20a/b, miR-106a/b and miR-93) as a potential factor responsible for increased p21 expression, a key senescence mediator, in Dicer1 knockdown cells. Moreover, we found that miR-93 and miR-20a expression levels were significantly reduced in mesenchymal stromal cells from patients and miR-93/miR-20a gain of function resulted in a decrease of cellular senescence. Collectively, the results of our study show that mesenchymal stromal cells from patients with myelodysplastic syndrome are prone to senescence and that Dicer1 down-regulation promotes cellular senescence and decreases the differentiation and stem cell-supporting capacities of mesenchymal stromal cells. Dicer1 down-regulation seems to contribute to the insufficient hematopoietic support capacities of mesenchymal stromal cells from patients with myelodysplastic syndrome.
Collapse
Affiliation(s)
- Youshan Zhao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Dong Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chengming Fei
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Juan Guo
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shuncheng Gu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yang Zhu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Feng Xu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zheng Zhang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lingyun Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiao Li
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chunkang Chang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|