1
|
Flor LS, Anderson JA, Ahmad N, Aravkin A, Carr S, Dai X, Gil GF, Hay SI, Malloy MJ, McLaughlin SA, Mullany EC, Murray CJL, O'Connell EM, Okereke C, Sorensen RJD, Whisnant J, Zheng P, Gakidou E. Health effects associated with exposure to secondhand smoke: a Burden of Proof study. Nat Med 2024; 30:149-167. [PMID: 38195750 PMCID: PMC10803272 DOI: 10.1038/s41591-023-02743-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/28/2023] [Indexed: 01/11/2024]
Abstract
Despite a gradual decline in smoking rates over time, exposure to secondhand smoke (SHS) continues to cause harm to nonsmokers, who are disproportionately children and women living in low- and middle-income countries. We comprehensively reviewed the literature published by July 2022 concerning the adverse impacts of SHS exposure on nine health outcomes. Following, we quantified each exposure-response association accounting for various sources of uncertainty and evaluated the strength of the evidence supporting our analyses using the Burden of Proof Risk Function methodology. We found all nine health outcomes to be associated with SHS exposure. We conservatively estimated that SHS increases the risk of ischemic heart disease, stroke, type 2 diabetes and lung cancer by at least around 8%, 5%, 1% and 1%, respectively, with the evidence supporting these harmful associations rated as weak (two stars). The evidence supporting the harmful associations between SHS and otitis media, asthma, lower respiratory infections, breast cancer and chronic obstructive pulmonary disease was weaker (one star). Despite the weak underlying evidence for these associations, our results reinforce the harmful effects of SHS on health and the need to prioritize advancing efforts to reduce active and passive smoking through a combination of public health policies and education initiatives.
Collapse
Affiliation(s)
- Luisa S Flor
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA.
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA.
| | - Jason A Anderson
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Noah Ahmad
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Aleksandr Aravkin
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA
| | - Sinclair Carr
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Xiaochen Dai
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Gabriela F Gil
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Simon I Hay
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA
| | - Matthew J Malloy
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Susan A McLaughlin
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Erin C Mullany
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Christopher J L Murray
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA
| | - Erin M O'Connell
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Chukwuma Okereke
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Reed J D Sorensen
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Joanna Whisnant
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Peng Zheng
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA
| | - Emmanuela Gakidou
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
Li M, He X, La Hovary C, Zhu Y, Dong Y, Liu S, Xing H, Liu Y, Jie Y, Ma D, Yuzuak S, Xie DY. A de novo regulation design shows an effectiveness in altering plant secondary metabolism. J Adv Res 2022; 37:43-60. [PMID: 35499047 PMCID: PMC9039656 DOI: 10.1016/j.jare.2021.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/26/2021] [Accepted: 06/17/2021] [Indexed: 11/25/2022] Open
Abstract
Introduction Transcription factors (TFs) and cis-regulatory elements (CREs) control gene transcripts involved in various biological processes. We hypothesize that TFs and CREs can be effective molecular tools for De Novo regulation designs to engineer plants. Objectives We selected two Arabidopsis TF types and two tobacco CRE types to design a De Novo regulation and evaluated its effectiveness in plant engineering. Methods G-box and MYB recognition elements (MREs) were identified in four Nicotiana tabacum JAZs (NtJAZs) promoters. MRE-like and G-box like elements were identified in one nicotine pathway gene promoter. TF screening led to select Arabidopsis Production of Anthocyanin Pigment 1 (PAP1/MYB) and Transparent Testa 8 (TT8/bHLH). Two NtJAZ and two nicotine pathway gene promoters were cloned from commercial Narrow Leaf Madole (NL) and KY171 (KY) tobacco cultivars. Electrophoretic mobility shift assay (EMSA), cross-linked chromatin immunoprecipitation (ChIP), and dual-luciferase assays were performed to test the promoter binding and activation by PAP1 (P), TT8 (T), PAP1/TT8 together, and the PAP1/TT8/Transparent Testa Glabra 1 (TTG1) complex. A DNA cassette was designed and then synthesized for stacking and expressing PAP1 and TT8 together. Three years of field trials were performed by following industrial and GMO protocols. Gene expression and metabolic profiling were completed to characterize plant secondary metabolism. Results PAP1, TT8, PAP1/TT8, and the PAP1/TT8/TTG1 complex bound to and activated NtJAZ promoters but did not bind to nicotine pathway gene promoters. The engineered red P + T plants significantly upregulated four NtJAZs but downregulated the tobacco alkaloid biosynthesis. Field trials showed significant reduction of five tobacco alkaloids and four carcinogenic tobacco specific nitrosamines in most or all cured leaves of engineered P + T and PAP1 genotypes. Conclusion G-boxes, MREs, and two TF types are appropriate molecular tools for a De Novo regulation design to create a novel distant-pathway cross regulation for altering plant secondary metabolism.
Collapse
Affiliation(s)
| | | | | | - Yue Zhu
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Yilun Dong
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Shibiao Liu
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Hucheng Xing
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Yajun Liu
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Yucheng Jie
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Dongming Ma
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Seyit Yuzuak
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - De-Yu Xie
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
4
|
Lee PN, Forey BA, Thornton AJ, Coombs KJ. The relationship of cigarette smoking in Japan to lung cancer, COPD, ischemic heart disease and stroke: A systematic review. F1000Res 2018; 7:204. [PMID: 30800285 PMCID: PMC6367657 DOI: 10.12688/f1000research.14002.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2018] [Indexed: 02/06/2023] Open
Abstract
Background: To present up-to-date meta-analyses of evidence from Japan relating smoking to major smoking-related diseases. Methods: We restricted attention to lung cancer, chronic obstructive pulmonary disease (COPD), ischemic heart disease (IHD) and stroke, considering relative risks (RRs) for current and ex-smokers relative to never smokers. Evidence by amount smoked and time quit was also considered. For IHD and stroke only, studies had to provide age-adjusted RRs, with age-specific results considered. For each disease we extended earlier published databases to include more recent studies. Meta-analyses were conducted, with random-effects RRs and tests of heterogeneity presented. Results: Of 40 studies, 26 reported results for lung cancer and 7 to 9 for each other disease. For current smoking, RRs (95%CIs) were lung cancer 3.59 (3.25-3.96), COPD 3.57 (2.72-4.70), IHD 2.21 (1.96-2.50) and stroke 1.40 (1.25-1.57). Ex-smoking RRs were lower. Data for lung cancer and IHD showed a clear tendency for RRs to rise with increasing amount smoked and decrease with increasing time quit. Dose-response data were unavailable for COPD and unclear for stroke, where the association was weaker. Conclusions: Compared to studies in other Asian and Western countries, current smoking RRs were quite similar for IHD and stroke. The comparison is not clear for COPD, where the Japanese data, mainly from cross-sectional studies, is limited. For lung cancer, the RRs are similar to those in other Asian countries, but substantially lower than in Western countries. Explanations for this are unclear, but less accurate reporting of smoking by Japanese may contribute to the difference.
Collapse
Affiliation(s)
- Peter N. Lee
- P.N. Lee Statistics and Computing Ltd., Sutton, SM2 5DA, UK
| | | | | | | |
Collapse
|