Xiao B, Zhao R, Wang N, Zhang J, Sun X, Huang F, Chen A. Integrating microneedle DNA extraction to hand-held microfluidic colorimetric LAMP chip system for meat adulteration detection.
Food Chem 2023;
411:135508. [PMID:
36701913 DOI:
10.1016/j.foodchem.2023.135508]
[Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/07/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Most microfluidic-based "sample-in-result-out" systems suffer sophisticated microfluidic production processes, high-cost chips, and expensive instruments. They cannot be used in the meat market as well as farmer's markets in rural areas. Here, we developed a hand-held microfluidic chip system for on-site meat species qualitative authentication detection which integrated a simple microneedle DNA extraction and a visual loop-mediated isothermal amplification (LAMP). The chip can be used by easily pricking meat samples, simply hand-shaking the chip, and readily available isothermal heating instead of a complicated DNA extraction process and microfluidic control device. The system demonstrates high specificity and sensitivity for selected six species of meat samples and low to 1% simulated adulteration could be detected within 60 min. Besides, the whole cost was less than 1 dollar. The integrated hand-held microfluidic detection system offers a simple, fast, low-cost "sample-in-result-out" point-of-care device which could be extended to medical diagnosis and animal/plant disease identification.
Collapse