1
|
Shahrami B, Sefidani Forough A, Khezrnia SS, Najmeddin F, Arabzadeh AA, Rouini MR, Najafi A, Mojtahedzadeh M. Relationship between amikacin pharmacokinetics and biological parameters associated with organ dysfunction: a case series study of critically ill patients with intra-abdominal sepsis. Eur J Hosp Pharm 2022; 29:e72-e76. [PMID: 34764144 PMCID: PMC8899638 DOI: 10.1136/ejhpharm-2021-003089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 10/25/2021] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES This study aimed to evaluate the relationship between amikacin pharmacokinetics and the biomarkers associated with organ dysfunction in critically ill patients with intra-abdominal sepsis. METHODS A case series involving critically ill patients with intra-abdominal sepsis who received an amikacin loading dose of 20-25 mg/kg intravenous infusion was studied. The 1-, 2-, 4-, 6- and 24-hour amikacin serum concentrations were measured to calculate the pharmacokinetic parameters. The Sequential Organ Failure Assessment (SOFA) score, white blood cells, neutrophil to lymphocyte ratio, platelet count, serum creatinine, creatinine clearance, bilirubin, partial pressure of oxygen to fraction of inspired oxygen ratio, serum albumin, procalcitonin, lactate level, erythrocyte sedimentation rate (ESR) and C-reactive protein were recorded. A linear regression analysis was performed to examine the relationship between the amikacin pharmacokinetics and the biological parameters. RESULTS Twenty-one patients were studied. A significant correlation was found between the volume of distribution and ESR (p<0.05, r=0.844). Moreover, drug clearance had a significant inverse correlation with serum lactate (p<0.05, r=-0.603). No other significant correlations were found. CONCLUSIONS ESR and serum lactate were identified as useful predictors of amikacin pharmacokinetics in critically ill patients with intra-abdominal sepsis and may help guide the selection of appropriate empirical dosing.
Collapse
Affiliation(s)
- Bita Shahrami
- Department of Clinical Pharmacy, Tehran University of Medical Sciences, Tehran, The Islamic Republic of Iran
| | - Aida Sefidani Forough
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Seyedeh Sana Khezrnia
- Department of Clinical Pharmacy, Tehran University of Medical Sciences, Tehran, The Islamic Republic of Iran
| | - Farhad Najmeddin
- Department of Clinical Pharmacy, Tehran University of Medical Sciences, Tehran, The Islamic Republic of Iran
| | - Amir Ahmad Arabzadeh
- Department of Surgery, Ardabil University of Medical Sciences, Ardabil, The Islamic Republic of Iran
| | - Mohammad Reza Rouini
- Department of Pharmaceutics, Tehran University of Medical Sciences, Tehran, The Islamic Republic of Iran
| | - Atabak Najafi
- Department of Anesthesiology and Critical Care, Tehran University of Medical Sciences, Tehran, The Islamic Republic of Iran
| | - Mojtaba Mojtahedzadeh
- Department of Clinical Pharmacy, Tehran University of Medical Sciences, Tehran, The Islamic Republic of Iran
| |
Collapse
|
2
|
De Winter S, van Hest R, Dreesen E, Annaert P, Wauters J, Meersseman W, Van den Eede N, Desmet S, Verelst S, Vanbrabant P, Peetermans W, Spriet I. Quantification and Explanation of the Variability of First-Dose Amikacin Concentrations in Critically Ill Patients Admitted to the Emergency Department: A Population Pharmacokinetic Analysis. Eur J Drug Metab Pharmacokinet 2021; 46:653-663. [PMID: 34297338 DOI: 10.1007/s13318-021-00698-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND There may be a difference between the determinants of amikacin exposure in emergency department (ED) versus intensive care (ICU) patients, and the peak amikacin concentration varies widely between patients. Moreover, when the first dose of antimicrobials is administered to septic patients admitted to the ED, fluid resuscitation and vasopressors have just been initiated. Nevertheless, population pharmacokinetic modelling data for amikacin in ED patients are unavailable. OBJECTIVE The aim of this study was to quantify the interindividual variability (IIV) in the pharmacokinetics of amikacin in patients admitted to the ED and to identify the patient characteristics that explain this IIV. METHODS Patients presenting at the ED with severe sepsis or septic shock were randomly assigned to receive amikacin 25 mg/kg or 15 mg/kg intravenously. Blood samples were collected at 1, 6 and 24 h after the onset of the first amikacin infusion. Data were analysed using nonlinear mixed-effects modelling. RESULTS A two-compartment population pharmacokinetic model was developed based on 279 amikacin concentrations from 97 patients. The IIV in clearance (CL) and central distribution volume (V1) were 71% and 26%, respectively. Body mass index (BMI), serum total protein level, serum sodium level, and fluid balance 24 h after amikacin administration explained 30% of the IIV in V1, leaving 18% of the IIV unexplained. BMI and creatinine clearance according to the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation 24 h after amikacin administration explained 46% of the IIV in CL, and 39% remained unexplained. CONCLUSION The IIV of amikacin pharmacokinetics in ED patients is large. Higher doses may be considered in patients with low serum sodium levels, low total protein levels, or a high fluid balance. TRIAL REGISTRATION ClinicalTrials.gov ID: NCT02365272.
Collapse
Affiliation(s)
- Sabrina De Winter
- Department of Pharmacy, Univesity Hospitals Leuven, Leuven, Belgium.
| | - Reinier van Hest
- Department of Hospital Pharmacy and Clinical Pharmacology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Erwin Dreesen
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.,Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Pieter Annaert
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium.,BioNotus, Galileilaan 15, 2845, Niel, Belgium
| | - Joost Wauters
- Department of Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Wouter Meersseman
- Department of Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Nele Van den Eede
- Laboratory of Clinical Bacteriology and Mycology, University Hospitals Leuven, Leuven, Belgium
| | - Stefanie Desmet
- Laboratory of Clinical Bacteriology and Mycology, University Hospitals Leuven, Leuven, Belgium
| | - Sandra Verelst
- Department of Emergency Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Peter Vanbrabant
- Department of Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Willy Peetermans
- Department of Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Isabel Spriet
- Department of Pharmacy, Univesity Hospitals Leuven, Leuven, Belgium.,Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Pérez-Blanco JS, Sáez Fernández EM, Calvo MV, Lanao JM, Martín-Suárez A. Evaluation of Current Amikacin Dosing Recommendations and Development of an Interactive Nomogram: The Role of Albumin. Pharmaceutics 2021; 13:pharmaceutics13020264. [PMID: 33672057 PMCID: PMC7919491 DOI: 10.3390/pharmaceutics13020264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to evaluate the potential efficacy and safety of the amikacin dosage proposed by the main guidelines and to develop an interactive nomogram, especially focused on the potential impact of albumin on initial dosage recommendation. The probability of target attainment (PTA) for each of the different dosing recommendations was calculated through stochastic simulations based on pharmacokinetic/pharmacodynamic (PKPD) criteria. Large efficacy and safety differences were observed for the evaluated amikacin dosing guidelines together with a significant impact of albumin concentrations on efficacy and safety. For all recommended dosages evaluated, efficacy and safety criteria of amikacin dosage proposed were not achieved simultaneously in most of the clinical scenarios evaluated. Furthermore, a significant impact of albumin was identified: The higher is the albumin, (i) the higher will be the PTA for maximum concentration/minimum inhibitory concentration (Cmax/MIC), (ii) the lower will be the PTA for the time period with drug concentration exceeding MIC (T>MIC) and (iii) the lower will be the PTA for toxicity (minimum concentration). Thus, accounting for albumin effect might be of interest for future amikacin dosing guidelines updates. In addition, AMKnom, an amikacin nomogram builder based on PKPD criteria, has been developed and is freely available to help evaluating dosing recommendations.
Collapse
Affiliation(s)
- Jonás Samuel Pérez-Blanco
- Department of Pharmaceutical Sciences, Pharmacy Faculty, University of Salamanca, 37007 Salamanca, Spain; (J.S.P.-B.); (E.M.S.F.); (M.V.C.); (A.M.-S.)
- Institute for Biomedical Research of Salamanca (IBSAL), Paseo de San Vicente, 58-182, 37007 Salamanca, Spain
| | - Eva María Sáez Fernández
- Department of Pharmaceutical Sciences, Pharmacy Faculty, University of Salamanca, 37007 Salamanca, Spain; (J.S.P.-B.); (E.M.S.F.); (M.V.C.); (A.M.-S.)
- Institute for Biomedical Research of Salamanca (IBSAL), Paseo de San Vicente, 58-182, 37007 Salamanca, Spain
- Pharmacy Service, University Hospital of Salamanca, Paseo de San Vicente, 58-182, 37007 Salamanca, Spain
| | - María Victoria Calvo
- Department of Pharmaceutical Sciences, Pharmacy Faculty, University of Salamanca, 37007 Salamanca, Spain; (J.S.P.-B.); (E.M.S.F.); (M.V.C.); (A.M.-S.)
- Institute for Biomedical Research of Salamanca (IBSAL), Paseo de San Vicente, 58-182, 37007 Salamanca, Spain
| | - José M. Lanao
- Department of Pharmaceutical Sciences, Pharmacy Faculty, University of Salamanca, 37007 Salamanca, Spain; (J.S.P.-B.); (E.M.S.F.); (M.V.C.); (A.M.-S.)
- Institute for Biomedical Research of Salamanca (IBSAL), Paseo de San Vicente, 58-182, 37007 Salamanca, Spain
- Correspondence: ; Tel.: +34-923294518
| | - Ana Martín-Suárez
- Department of Pharmaceutical Sciences, Pharmacy Faculty, University of Salamanca, 37007 Salamanca, Spain; (J.S.P.-B.); (E.M.S.F.); (M.V.C.); (A.M.-S.)
| |
Collapse
|
4
|
Population Pharmacokinetics of Amikacin in Adult Patients with Cystic Fibrosis. Antimicrob Agents Chemother 2018; 62:AAC.00877-18. [PMID: 30061295 DOI: 10.1128/aac.00877-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/25/2018] [Indexed: 12/27/2022] Open
Abstract
Practitioners commonly use amikacin in patients with cystic fibrosis. Establishment of the pharmacokinetics of amikacin in adults with cystic fibrosis may increase the efficacy and safety of therapy. This study was aimed to establish the population pharmacokinetics of amikacin in adults with cystic fibrosis. We used serum concentration data obtained during routine therapeutic drug monitoring and explored the influence of patient covariates on drug disposition. We performed a retrospective chart review to collect the amikacin dosing regimens, serum amikacin concentrations, blood sampling times, and patient characteristics for adults with cystic fibrosis admitted for treatment of acute pulmonary exacerbations. Amikacin concentrations were retrospectively collected for 49 adults with cystic fibrosis, and 192 serum concentrations were available for analysis. A population pharmacokinetic model was developed using nonlinear mixed-effects modeling with the first-order conditional estimation method. A two-compartment model with first-order elimination best described amikacin pharmacokinetics. Creatinine clearance and weight were identified as significant covariates for clearance and the volume of distribution, respectively, in the final model. Residual variability was modeled using a proportional error model. Typical estimates for clearance, central and peripheral volumes of distribution, and intercompartmental clearance were 3.06 liters/h, 14.4 liters, 17.1 liters, and 0.925 liters/h, respectively. The pharmacokinetics of amikacin in individuals with cystic fibrosis seems to differ from those in individuals without cystic fibrosis. However, further investigations are needed to confirm these results and, thus, the need for variations in amikacin dosing. Future pharmacodynamic studies will potentially establish the optimal amikacin dosing regimens for the treatment of acute pulmonary exacerbations in adult patients with CF.
Collapse
|
5
|
De Winter S, Wauters J, Meersseman W, Verhaegen J, Van Wijngaerden E, Peetermans W, Annaert P, Verelst S, Spriet I. Higher versus standard amikacin single dose in emergency department patients with severe sepsis and septic shock: a randomised controlled trial. Int J Antimicrob Agents 2018; 51:562-570. [DOI: 10.1016/j.ijantimicag.2017.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 11/15/2017] [Accepted: 11/18/2017] [Indexed: 12/01/2022]
|
6
|
del Mar Fernández de Gatta M, Martin-Suarez A, Lanao JM. Approaches for dosage individualisation in critically ill patients. Expert Opin Drug Metab Toxicol 2013; 9:1481-93. [PMID: 23898816 DOI: 10.1517/17425255.2013.822486] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Pharmacokinetic variability in critically ill patients is the result of the overlapping of multiple pathophysiological and clinical factors. Unpredictable exposure from standard dosage regimens may influence the outcome of treatment. Therefore, strategies for dosage individualisation are recommended in this setting. AREAS COVERED The authors focus on several approaches for dosage individualisation that have been developed, ranging from the well-established therapeutic drug monitoring (TDM) up to the innovative application of pharmacogenomics criteria. Furthermore, the authors summarise the specific population pharmacokinetic models for different drugs developed for critically ill patients to improve the initial dosage selection and the Bayesian forecasting of serum concentrations. The authors also consider the use of Monte Carlo simulation for the selection of dosage strategies. EXPERT OPINION Pharmacokinetic/pharmacodynamics (PK/PD) modelling and dosage individualisation methods based on mathematical and statistical criteria will contribute in improving pharmacologic treatment in critically ill patients. Moreover, substantial effort will be necessary to integrate pharmacogenomics criteria into critical care practice. The lack of availability of target biomarkers for dosage adjustment emphasizes the value of TDM which allows a large part of treatment outcome variability to be controlled.
Collapse
Affiliation(s)
- M del Mar Fernández de Gatta
- University of Salamanca, Institute of Biomedical Research of Salamanca (IBSAL), Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy , Avda. Licenciado Méndez Núñez, 37007 Salamanca , Spain +0034 923 294 536 ; +0034 923 294 515 ;
| | | | | |
Collapse
|
7
|
Taccone FS, Hites M, Beumier M, Scolletta S, Jacobs F. Appropriate antibiotic dosage levels in the treatment of severe sepsis and septic shock. Curr Infect Dis Rep 2011; 13:406-15. [PMID: 21805081 DOI: 10.1007/s11908-011-0203-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Antibiotic treatment of critically ill patients remains a significant challenge. Optimal antibacterial strategy should achieve therapeutic drug concentration in the blood as well as the infected site. Achieving therapeutic drug concentrations is particularly difficult when infections are caused by some pathogens, such as Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus (MRSA) and Gram-negative rods, because of their low susceptibility to antimicrobials. In sepsis, pharmacokinetics (PKs) of antibiotics are profoundly altered and may result in inadequate drug concentrations, even when recommended regimens are used, which potentially contribute to increased mortality and spread of resistance. The wide inter-individual PK variability observed in septic patients strongly limits the a priori prediction of the optimal dose that should be administered. Higher than standard dosages are necessary for the drugs, such as β-lactams, aminoglycosides, and glycopeptides, that are commonly used as first-line therapy in these patients to maximize their antibacterial activity. However, the benefit of reaching adequate drug concentrations on clinical outcome needs to be further determined.
Collapse
Affiliation(s)
- Fabio Silvio Taccone
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070, Brussels, Belgium,
| | | | | | | | | |
Collapse
|
8
|
Population Pharmacokinetic Modeling and Optimal Sampling Strategy for Bayesian Estimation of Amikacin Exposure in Critically Ill Septic Patients. Ther Drug Monit 2010; 32:749-56. [DOI: 10.1097/ftd.0b013e3181f675c2] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Taccone FS, Laterre PF, Spapen H, Dugernier T, Delattre I, Layeux B, De Backer D, Wittebole X, Wallemacq P, Vincent JL, Jacobs F. Revisiting the loading dose of amikacin for patients with severe sepsis and septic shock. Crit Care 2010; 14:R53. [PMID: 20370907 PMCID: PMC2887170 DOI: 10.1186/cc8945] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Revised: 03/04/2010] [Accepted: 04/06/2010] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION It has been proposed that doses of amikacin of >15 mg/kg should be used in conditions associated with an increased volume of distribution (Vd), such as severe sepsis and septic shock. The primary aim of this study was to determine whether 25 mg/kg (total body weight) of amikacin is an adequate loading dose for these patients. METHODS This was an open, prospective, multicenter study in four Belgian intensive care units (ICUs). All consecutive patients with a diagnosis of severe sepsis or septic shock, in whom amikacin treatment was indicated, were included in the study. RESULTS In 74 patients, serum samples were collected before (t = 0 h) and 1 hour (peak), 1 hour 30 minutes, 4 hours 30 minutes, 8 hours, and 24 hours after the first dose of amikacin. Blood amikacin levels were measured by using a validated fluorescence polarization immunoassay method, and an open two-compartment model with first-order elimination was fitted to concentrations-versus-time data for amikacin (WinNonlin). In 52 (70%) patients, peak serum concentrations were >64 microg/ml, which corresponds to 8 times the clinical minimal inhibitory concentration (MIC) breakpoints defined by EUCAST for Enterobacteriaceae and Pseudomonas aeruginosa (S<8, R>16 microg/ml). Vd was 0.41 (0.29 to 0.51) L/kg; elimination half-life, 4.6 (3.2 to 7.8) hours; and total clearance, 1.98 (1.28 to 3.54) ml/min/kg. No correlation was found between the amikacin peak and any clinical or hemodynamic variable. CONCLUSIONS As patients with severe sepsis and septic shock have an increased Vd, a first dose of >or= 25 mg/kg (total body weight) of amikacin is required to reach therapeutic peak concentrations. However, even with this higher amikacin dose, the peak concentration remained below therapeutic target levels in about one third of these patients. Optimizing aminoglycoside therapy should be achieved by tight serum-concentration monitoring because of the wide interindividual variability of pharmacokinetic abnormalities.
Collapse
Affiliation(s)
- Fabio Silvio Taccone
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070 Bruxelles, Belgium
| | - Pierre-François Laterre
- Department of Intensive Care, Cliniques Universitaires St-Luc Avenue Hippocrate 10, 1200 Bruxelles, Belgium
| | - Herbert Spapen
- Department of Intensive Care, Universitair Ziekenhuis Brussel, Laerbeeklaan 101, 1090 Bruxelles, Belgium
| | - Thierry Dugernier
- Department of Intensive Care, St-Pierre Hospital, Avenue Reine Fabiola 9, 1340 Ottignies, Belgium
| | - Isabelle Delattre
- Department of Clinical Biochemistry and Pharmacokinetics, Cliniques Universitaires, St-Luc Avenue Hippocrate 10, 1200 Bruxelles, Belgium
| | - Brice Layeux
- Department of Infectious Diseases, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070 Bruxelles, Belgium
| | - Daniel De Backer
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070 Bruxelles, Belgium
| | - Xavier Wittebole
- Department of Intensive Care, Cliniques Universitaires St-Luc Avenue Hippocrate 10, 1200 Bruxelles, Belgium
| | - Pierre Wallemacq
- Department of Clinical Biochemistry and Pharmacokinetics, Cliniques Universitaires, St-Luc Avenue Hippocrate 10, 1200 Bruxelles, Belgium
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070 Bruxelles, Belgium
| | - Frédérique Jacobs
- Department of Infectious Diseases, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070 Bruxelles, Belgium
| |
Collapse
|
10
|
de Gatta MDMF, Moreno SR, Calvo MV, Ardanuy R, Domínguez-Gil A, Lanao JM. Evaluation of population pharmacokinetic models for amikacin dosage individualization in critically ill patients. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.61.06.0008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Objectives
The aim of this study was to evaluate the reliability for dosage individualization and Bayesian adaptive control of several literature-retrieved amikacin population pharmacokinetic models in patients who were critically ill.
Methods
Four population pharmacokinetic models, three of them customized for critically-ill patients, were applied using pharmacokinetic software to fifty-one adult patients on conventional amikacin therapy admitted to the intensive care unit. An estimation of patient-specific pharmacokinetic parameters for each model was obtained by retrospective analysis of the amikacin serum concentrations measured (n = 162) and different clinical covariates. The model performance for a priori estimation of the area under the serum concentration-time curve (AUC) and maximum serum drug concentration (Cmax) targets was obtained.
Key findings
Our results provided valuable confirmation of the clinical importance of the choice of population pharmacokinetic models when selecting amikacin dosages for patients who are critically ill. Significant differences in model performance were especially evident when only information concerning clinical covariates was used for dosage individualization and over the two most critical determinants of clinical efficacy of amikacin i.e. the AUC and Cmax values.
Conclusions
Only a single amikacin serum level seemed necessary to diminish the influence of population model on dosage individualization.
Collapse
Affiliation(s)
| | | | | | - Ramón Ardanuy
- Department of Statistics Faculty of Sciences, University of Salamanca, Spain
| | - Alfonso Domínguez-Gil
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Salamanca, Spain
- Pharmacy Service, University Hospital of Salamanca, Spain
| | - José M Lanao
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Salamanca, Spain
| |
Collapse
|