1
|
Wu T, Huang J, Li Y, Guo Y, Wang H, Zhang Y. Prenatal acetaminophen exposure and the developing ovary: Time, dose, and course consequences for fetal mice. Food Chem Toxicol 2024; 189:114679. [PMID: 38657942 DOI: 10.1016/j.fct.2024.114679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Acetaminophen is an emerging endocrine disrupting chemical and has been detected in various natural matrices. Numerous studies have documented developmental toxicity associated with prenatal acetaminophen exposure (PAcE). In this study, we established a PAcE Kunming mouse model at different time (middle pregnancy and third trimester), doses (low, middle, high) and courses (single or multi-) to systematically investigate their effects on fetal ovarian development. The findings indicated PAcE affected ovarian development, reduced fetal ovarian oocyte number and inhibited cell proliferation. A reduction in mRNA expression was observed for genes associated with oocyte markers (NOBOX and Figlα), follicular development markers (BMP15 and GDF9), and pre-granulosa cell steroid synthase (SF1 and StAR). Notably, exposure in middle pregnancy, high dose, multi-course resulted in the most pronounced inhibition of oocyte development; exposure in third trimester, high dose and multi-course led to the most pronounced inhibition of follicular development; and in third trimester, low dose and single course, the inhibition of pre-granulosa cell function was most pronounced. Mechanistic investigations revealed that PAcE had the most pronounced suppression of the ovarian Notch signaling pathway. Overall, PAcE caused fetal ovarian multicellular toxicity and inhibited follicular development with time, dose and course differences.
Collapse
Affiliation(s)
- Tiancheng Wu
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jing Huang
- Department of Otorhinolaryngology and HN Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yating Li
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yu Guo
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Hui Wang
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Yuanzhen Zhang
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China; Clinical Research Center for Prenatal Diagnosis and Birth Health of Hubei Province, Wuhan, 430071, China; Clinical Research Center for Reproductive Science and Birth Health of Wuhan, Wuhan, 430071, China.
| |
Collapse
|
2
|
McCulley DJ, Jensen EA, Sucre JMS, McKenna S, Sherlock LG, Dobrinskikh E, Wright CJ. Racing against time: leveraging preclinical models to understand pulmonary susceptibility to perinatal acetaminophen exposures. Am J Physiol Lung Cell Mol Physiol 2022; 323:L1-L13. [PMID: 35503238 PMCID: PMC9208439 DOI: 10.1152/ajplung.00080.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022] Open
Abstract
Over the past decade, clinicians have increasingly prescribed acetaminophen (APAP) for patients in the neonatal intensive care unit (NICU). Acetaminophen has been shown to reduce postoperative opiate burden, and may provide similar efficacy for closure of the patent ductus arteriosus (PDA) as nonsteroidal anti-inflammatory drugs (NSAIDs). Despite these potential benefits, APAP exposures have spread to increasingly less mature infants, a highly vulnerable population for whom robust pharmacokinetic and pharmacodynamic data for APAP are lacking. Concerningly, preclinical studies suggest that perinatal APAP exposures may result in unanticipated adverse effects that are unique to the developing lung. In this review, we discuss the clinical observations linking APAP exposures to adverse respiratory outcomes and the preclinical data demonstrating a developmental susceptibility to APAP-induced lung injury. We show how clinical observations linking perinatal APAP exposures to pulmonary injury have been taken to the bench to produce important insights into the potential mechanisms underlying these findings. We argue that the available data support a more cautious approach to APAP use in the NICU until large randomized controlled trials provide appropriate safety and efficacy data.
Collapse
Affiliation(s)
- David J McCulley
- Division of Neonatology, Department of Pediatrics, University of California, San Diego, California
| | - Erik A Jensen
- Division of Neonatology, Department of Pediatrics, The Children's Hospital of Philadelphia, The University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | | | - Sarah McKenna
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Laura G Sherlock
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Evgenia Dobrinskikh
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
3
|
Alchin J, Dhar A, Siddiqui K, Christo PJ. Why paracetamol (acetaminophen) is a suitable first choice for treating mild to moderate acute pain in adults with liver, kidney or cardiovascular disease, gastrointestinal disorders, asthma, or who are older. Curr Med Res Opin 2022; 38:811-825. [PMID: 35253560 DOI: 10.1080/03007995.2022.2049551] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acute pain is among the most common reasons that people consult primary care physicians, who must weigh benefits versus risks of analgesics use for each patient. Paracetamol (acetaminophen) is a first-choice analgesic for many adults with mild to moderate acute pain, is generally well tolerated at recommended doses (≤4 g/day) in healthy adults and may be preferable to non-steroidal anti-inflammatory drugs that are associated with undesirable gastrointestinal, renal, and cardiovascular effects. Although paracetamol is widely used, many patients and physicians still have questions about its suitability and dosing, especially for older people or adults with underlying comorbidities, for whom there are limited clinical data or evidence-based guidelines. Inappropriate use may increase the risks of both overdosing and inadequate analgesia. To address knowledge deficits and augment existing guidance in salient areas of uncertainty, we have researched, reviewed, and collated published evidence and expert opinion relevant to the acute use of paracetamol by adults with liver, kidney, or cardiovascular diseases, gastrointestinal disorders, asthma, or/and who are older. A concern is hepatotoxicity, but this is rare among adults who use paracetamol as directed, including people with cirrhotic liver disease. Putative epidemiologic associations of paracetamol use with kidney or cardiovascular disease, hypertension, gastrointestinal disorders, and asthma largely reflect confounding biases and are of doubtful relevance to short-term use (<14 days). Paracetamol is a suitable first-line analgesic for mild to moderate acute pain in many adults with liver, kidney or cardiovascular disease, gastrointestinal disorders, asthma, and/or who are older. No evidence supports routine dose reduction for older people. Rather, dosing for adults who are older and/or have decompensated cirrhosis, advanced kidney failure, or analgesic-induced asthma that is known to be cross-sensitive to paracetamol, should be individualized in consultation with their physician, who may recommend a lower effective dose appropriate to the circumstances.
Collapse
Affiliation(s)
- John Alchin
- Pain Management Centre, Burwood Hospital, Burwood, New Zealand
| | - Arti Dhar
- GlaxoSmithKline Consumer Healthcare Pte. Ltd, Singapore
| | | | - Paul J Christo
- Department of Anesthesiology and Critical Care Medicine, Division of Pain Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Kelly TL, Ward M, Pratt NL, Ramsay E, Gillam M, Roughead EE. The association between exacerbation of chronic obstructive pulmonary disease and timing of paracetamol use: a cohort study in elderly Australians. Respir Res 2022; 23:80. [PMID: 35382818 PMCID: PMC8979782 DOI: 10.1186/s12931-022-02010-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/29/2022] [Indexed: 12/02/2022] Open
Abstract
Background In elderly populations, paracetamol may be used regularly for conditions such as osteoarthritis. Paracetamol has been associated with respiratory disease through a proposed mechanism of glutathione depletion and oxidative stress. Given that chronic obstructive pulmonary disease (COPD) is frequently co-morbid with osteoarthritis, this study investigated whether the dose and timing of paracetamol exposure may induce COPD exacerbations. Methods The study population was 3523 Australian Government Department of Veterans’ Affairs full entitlement holders who had existing COPD on 1 January 2011, who were dispensed at least one prescription of paracetamol between 1 January 2011 and 30 September 2015, and had no paracetamol dispensed in the 6 months prior to 1 January 2011. The outcome was time to first hospitalisation for COPD exacerbation after initiation of paracetamol. A weighted cumulative exposure approach was used. Results The association between paracetamol exposure and COPD exacerbation was protective or harmful depending on the dose, duration, and recency of exposure. Compared to non-use, current use at the maximum dose of 4 g daily for 7 days was associated with a lower risk (HR = 0.78, 95% CI = 0.67–0.92) and a higher risk after 30 days (HR = 1.27, 95% CI = 1.06–1.52). Risk declined to baseline after 2 months. For past use, there was a short-term increase in risk on discontinuation depending of dose, duration and time since stopping. Conclusions Patients and doctors should be aware of the possible risk of COPD exacerbation with higher dose paracetamol 1 to 6 weeks after initiation or discontinuation, but no increased risk after 2 months. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02010-z.
Collapse
Affiliation(s)
- Thu-Lan Kelly
- Clinical and Health Sciences, Quality Use of Medicines Pharmacy Research Centre, University of South Australia, Adelaide, Australia.
| | - Michael Ward
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Nicole L Pratt
- Clinical and Health Sciences, Quality Use of Medicines Pharmacy Research Centre, University of South Australia, Adelaide, Australia
| | - Emmae Ramsay
- Clinical and Health Sciences, Quality Use of Medicines Pharmacy Research Centre, University of South Australia, Adelaide, Australia
| | - Marianne Gillam
- Clinical and Health Sciences, Quality Use of Medicines Pharmacy Research Centre, University of South Australia, Adelaide, Australia
| | - Elizabeth E Roughead
- Clinical and Health Sciences, Quality Use of Medicines Pharmacy Research Centre, University of South Australia, Adelaide, Australia
| |
Collapse
|
5
|
Dobrinskikh E, Al-Juboori SI, Zarate MA, Zheng L, De Dios R, Balasubramaniyan D, Sherlock LG, Orlicky DJ, Wright CJ. Pulmonary implications of acetaminophen exposures independent of hepatic toxicity. Am J Physiol Lung Cell Mol Physiol 2021; 321:L941-L953. [PMID: 34585971 PMCID: PMC8616618 DOI: 10.1152/ajplung.00234.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 11/22/2022] Open
Abstract
Both preclinical and clinical studies have demonstrated that exposures to acetaminophen (APAP) at levels that cause hepatic injury cause pulmonary injury as well. However, whether exposures that do not result in hepatic injury have acute pulmonary implications is unknown. Thus, we sought to determine how APAP exposures at levels that do not result in significant hepatic injury impact the mature lung. Adult male ICR mice (8-12 wk) were exposed to a dose of APAP known to cause hepatotoxicity in adult mice [280 mg/kg, intraperitoneal (ip)], as well as a lower dose previously reported to not cause hepatic injury (140 mg/kg, ip). We confirm that the lower dose exposures did not result in significant hepatic injury. However, like high dose, lower exposure resulted in increased cellular content of the bronchoalveolar lavage fluid and induced a proinflammatory pulmonary transcriptome. Both the lower and higher dose exposures resulted in measurable changes in lung morphometrics, with the lower dose exposure causing alveolar wall thinning. Using RNAScope, we were able to detect dose-dependent, APAP-induced pulmonary Cyp2e1 expression. Finally, using FLIM we determined that both APAP exposures resulted in acute pulmonary metabolic changes consistent with mitochondrial overload in lower doses and a shift to glycolysis at a high dose. Our findings demonstrate that APAP exposures that do not cause significant hepatic injury result in acute inflammatory, morphometric, and metabolic changes in the mature lung. These previously unreported findings may help explain the potential relationship between APAP exposures and pulmonary-related morbidity.
Collapse
Affiliation(s)
- Evgenia Dobrinskikh
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Saif I Al-Juboori
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Miguel A Zarate
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Lijun Zheng
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Robyn De Dios
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Durga Balasubramaniyan
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Laura G Sherlock
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - David J Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
6
|
Kennon-McGill S, McGill MR. Extrahepatic toxicity of acetaminophen: critical evaluation of the evidence and proposed mechanisms. J Clin Transl Res 2018. [PMID: 30895271 PMCID: PMC5815839 DOI: 10.18053/jctres.03.201703.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Research on acetaminophen (APAP) toxicity over the last several decades has focused on the pathophysiology of liver injury, but increasingly attention is paid to other known and possible adverse effects. It has been known for decades that APAP causes acute kidney injury, but confusion exists regarding prevalence, and the mechanisms have not been well investigated. More recently, evidence for pulmonary, endocrine, neurological, and neurodevelopmental toxicity has been reported in a number of published experimental, clinical, and epidemiological studies, but the quality of those studies has varied. It is important to view those data critically due to implications for regulation and clinical practice. Here, we review evidence and proposed mechanisms for extrahepatic adverse effects of APAP and weigh weaknesses and strengths in the available data.
Collapse
Affiliation(s)
- Stefanie Kennon-McGill
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States.,Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Mitchell R McGill
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| |
Collapse
|
7
|
Weatherall M, Ioannides S, Braithwaite I, Beasley R. The association between paracetamol use and asthma: causation or coincidence? Clin Exp Allergy 2015; 45:108-13. [PMID: 25220564 DOI: 10.1111/cea.12410] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A better understanding of the causation of asthma and allergic disorders could potentially lead to intervention strategies that reduce their prevalence and severity. One potential causative factor is the use of paracetamol. Most of the evidence for the link with asthma is from non-experimental studies of paracetamol exposure in utero, infancy, childhood and adult life; however, it has been difficult to rule out confounding and bias in the associations observed. The two randomized clinical trials of the effect of paracetamol in patients with asthma have been difficult to interpret, due to methodological issues. There have been no randomized controlled trials of paracetamol use and the development of asthma. Both asthma and paracetamol use are common, and so even if there is a relatively small effect of paracetamol exposure on the development of asthma or its severity, then such an effect would be of major public health significance. It is proposed that randomized controlled trials of the effect of paracetamol on the development of asthma and its severity are a high research priority.
Collapse
Affiliation(s)
- M Weatherall
- University of Otago Wellington, Wellington, New Zealand
| | | | | | | |
Collapse
|
8
|
The association between acetaminophen and asthma: is there anything to learn from the upper airways? Curr Opin Allergy Clin Immunol 2014; 14:25-8. [PMID: 24322007 DOI: 10.1097/aci.0000000000000026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To examine the literature evidence for the association between acetaminophen (paracetamol) use and development of rhinitis. RECENT FINDINGS Increased use of acetaminophen (paracetamol) as the favored antipyretic during pregnancy and infancy has been hypothesized to be a risk factor for the development of asthma. There is a paucity of well designed birth cohort studies to examine paracetamol as a risk factor in the development of rhinitis. Confounding by antibiotic use, viral infections, and recall bias are problematic for many of the studies that are published. SUMMARY Prospective birth cohorts need to dedicate sufficient time and research personnel to adequately assess paracetamol exposure as a primary variable of interest rather than as an incidental exposure variable collected during routine questionnaire administration.
Collapse
|
9
|
Grainge CL, Davies DE. Epithelial injury and repair in airways diseases. Chest 2014; 144:1906-1912. [PMID: 24297122 DOI: 10.1378/chest.12-1944] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Asthma is a common chronic disease characterized by variable respiratory distress with underlying airway inflammation and airflow obstruction. The incidence of asthma has risen inexorably over the past 50 years, suggesting that environmental factors are important in its etiology. All inhaled environmental stimuli interact with the lung at the respiratory epithelium, and it is a testament to the effectiveness of the airway innate defenses that the majority of inhaled substances are cleared without the need to elicit an inflammatory response. However, once this barrier is breached, effective communication with immune and inflammatory cells is required to protect the internal milieu of the lung. In asthma, the respiratory epithelium is known to be structurally and functionally abnormal. Structurally, the epithelium shows evidence of damage and has more mucus-producing cells than normal airways. Functionally, the airway epithelial barrier can be more permeable and more sensitive to oxidants and show a deficient innate immune response to respiratory virus infection compared with that in normal individuals. The potential of a susceptible epithelium and the underlying mesenchyme to create a microenvironment that enables deviation of immune and inflammatory responses to external stimuli may be crucial in the development and progression of asthma. In this review, we consider three important groups of environmental stimuli on the epithelium in asthma: oxidants, such as environmental pollution and acetaminophen; viruses, including rhinovirus; and agents that cause barrier disruption, such as house dust mite allergens. The pathology associated with each stimulus is considered, and potential future treatments arising from research on their effects are presented.
Collapse
Affiliation(s)
- Christopher L Grainge
- Academic Unit of Clinical and Experimental Sciences, University Hospital Southampton, Southampton, England.
| | - Donna E Davies
- Academic Unit of Clinical and Experimental Sciences, University Hospital Southampton, Southampton, England; University of Southampton Faculty of Medicine, and NIHR Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton, England
| |
Collapse
|
10
|
Di Pierro F, Rossoni G. An amino acids mixture improves the hepatotoxicity induced by acetaminophen in mice. JOURNAL OF AMINO ACIDS 2013; 2013:615754. [PMID: 23878731 PMCID: PMC3710638 DOI: 10.1155/2013/615754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 05/12/2013] [Accepted: 06/02/2013] [Indexed: 01/23/2023]
Abstract
Acetaminophen (APAP) is a widely used analgesic and antipyretic drug, but at high dose it leads to undesirable side effects, such as hepatotoxicity and nephrotoxicity. The aim of this study was to evaluate the protective role of DDM-GSH, a mixture of L-cysteine, L-methionine, and L-serine in a weight ratio of 2 : 1 : 1, in comparison to N-acetylcysteine (NAC), against acetaminophen- (APAP-) induced hepatotoxicity in mice. Toxicity was induced in mice by the intraperitoneal (ip) administration of low dose (2 mmol/kg) or high dose (8 mmol/kg) of APAP. DDM-GSH (0.4 to 1.6 mmol/kg) was given ip to mice 1 h before the APAP administration. The same was done with NAC (0.9 to 3.6 mmol/kg), the standard antidote of APAP toxicity. Mice were sacrificed 8 h after the APAP injection to determine liver weight, serum alanine aminotransferase (ALT), and total glutathione (GSH) depletion and malondialdehyde (MDA) accumulation in liver tissues. DDM-GSH improved mouse survival rates better than NAC against a high dose of APAP. Moreover, DDM-GSH significantly reduced in a dose-dependent manner not only APAP-induced increases of ALT but also APAP-induced hepatic GSH depletion and MDA accumulation. Our results suggest that DDM-GSH may be more potent than NAC in protecting the liver from APAP-induced liver injury.
Collapse
Affiliation(s)
- Francesco Di Pierro
- Scientific Department, Velleja Research, Viale Lunigiana 23, 20125 Milan, Italy
| | - Giuseppe Rossoni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| |
Collapse
|
11
|
Hogan WR, Hanna J, Joseph E, Brochhausen M. Towards a Consistent and Scientifically Accurate Drug Ontology. CEUR WORKSHOP PROCEEDINGS 2013; 1060:68-73. [PMID: 27867326 PMCID: PMC5111807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Our use case for comparative effectiveness research requires an ontology of drugs that enables querying National Drug Codes (NDCs) by active ingredient, mechanism of action, physiological effect, and therapeutic class of the drug products they represent. We conducted an ontological analysis of drugs from the realist perspective, and evaluated existing drug terminology, ontology, and database artifacts from (1) the technical perspective, (2) the perspective of pharmacology and medical science (3) the perspective of description logic semantics (if they were available in Web Ontology Language or OWL), and (4) the perspective of our realism-based analysis of the domain. No existing resource was sufficient. Therefore, we built the Drug Ontology (DrOn) in OWL, which we populated with NDCs and other classes from RxNorm using only content created by the National Library of Medicine. We also built an application that uses DrOn to query for NDCs as outlined above, available at: http://ingarden.uams.edu/ingredients. The application uses an OWL-based description logic reasoner to execute end-user queries. DrOn is available at http://code.google.com/p/dr-on.
Collapse
Affiliation(s)
- William R. Hogan
- Division of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Josh Hanna
- Division of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Eric Joseph
- Division of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Mathias Brochhausen
- Division of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|