1
|
Correia AC, Monteiro AR, Silva R, Moreira JN, Sousa Lobo JM, Silva AC. Lipid nanoparticles strategies to modify pharmacokinetics of central nervous system targeting drugs: Crossing or circumventing the blood-brain barrier (BBB) to manage neurological disorders. Adv Drug Deliv Rev 2022; 189:114485. [PMID: 35970274 DOI: 10.1016/j.addr.2022.114485] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 01/24/2023]
Abstract
The main limitation to the success of central nervous system (CNS) therapies lies in the difficulty for drugs to cross the blood-brain barrier (BBB) and reach the brain. Regarding its structure and enzymatic complexity, crossing the BBB is a challenge, although several alternatives have been identified. For instance, the use of drugs encapsulated in lipid nanoparticles has been described as one of the most efficient approaches to bypass the BBB, as they allow the passage of drugs through this barrier, improving brain bioavailability. In particular, solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) have been a focus of research related to drug delivery to the brain. These systems provide protection of lipophilic drugs, improved delivery and bioavailability, having a major impact on treatments outcomes. In addition, the use of lipid nanoparticles administered via routes that transport drugs directly into the brain seems a promising solution to avoid the difficulties in crossing the BBB. For instance, the nose-to-brain route has gained considerable interest, as it has shown efficacy in 3D human nasal models and in animal models. This review addresses the state of the art on the use of lipid nanoparticles to modify the pharmacokinetics of drugs employed in the management of neurological disorders. A description of the structural components of the BBB, the role of the neurovascular unit and limitations for drugs to entry into the CNS is first addressed, along with the developments to increase drug delivery to the brain, with a special focus on lipid nanoparticles. In addition, the obstacle of BBB complexity in the creation of new effective drugs for the treatment of the most prevalent neurological disorders is also addressed. Finally, the proposed strategies for lipid nanoparticles to reach the CNS, crossing or circumventing the BBB, are described. Although promising results have been reported, especially with the nose-to-brain route, they are still ongoing to assess its real efficacy in vivo in the management of neurological disorders.
Collapse
Affiliation(s)
- A C Correia
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - A R Monteiro
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, Porto, Portugal
| | - R Silva
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, Porto, Portugal.
| | - J N Moreira
- CNC - Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Pólo I), Coimbra, Portugal; Univ Coimbra - University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - J M Sousa Lobo
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - A C Silva
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal; FP-I3ID (Instituto de Investigação, Inovação e Desenvolvimento), FP-BHS (Biomedical and Health Sciences Research Unit), Faculty of Health Sciences, University Fernando Pessoa, 4249 004 Porto, Portugal.
| |
Collapse
|
2
|
Sommonte F, Arduino I, Racaniello GF, Lopalco A, Lopedota AA, Denora N. The Complexity of the Blood-Brain Barrier and the Concept of Age-Related Brain Targeting: Challenges and Potential of Novel Solid Lipid-Based Formulations. J Pharm Sci 2021; 111:577-592. [PMID: 34469749 DOI: 10.1016/j.xphs.2021.08.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022]
Abstract
Diseases that affect the Central Nervous System (CNS) are one of the most exciting challenges of recent years, as they are ubiquitous and affect all ages. Although these disorders show different etiologies, all treatments share the same difficulty represented by the Blood-Brain Barrier (BBB). This barrier acts as a protective system of the delicate cerebral microenvironment, isolating it and making extremely arduous delivering drugs to the brain. To overtake the obstacles provided by the BBB it is essential to explore the changes that affect it, to understand how to exploit these findings in the study and design of innovative brain targeted formulations. Interestingly, the concept of age-related targeting could prove to be a winning choice, as it allows to consider the type of treatment according to the different needs and peculiarities depending on the disease and the age of onset. In this review was considered the prospective contribution of lipid-based formulations, namely Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs), which have been highlighted as able to overcome some limitations of other innovative approaches, thus representing a promising strategy for the non-invasive specific treatment of CNS-related diseases.
Collapse
Affiliation(s)
- Federica Sommonte
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 Orabona St., 70125, Bari, Italy
| | - Ilaria Arduino
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 Orabona St., 70125, Bari, Italy
| | | | - Antonio Lopalco
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 Orabona St., 70125, Bari, Italy
| | - Angela Assunta Lopedota
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 Orabona St., 70125, Bari, Italy
| | - Nunzio Denora
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 Orabona St., 70125, Bari, Italy.
| |
Collapse
|
3
|
Satapathy MK, Yen TL, Jan JS, Tang RD, Wang JY, Taliyan R, Yang CH. Solid Lipid Nanoparticles (SLNs): An Advanced Drug Delivery System Targeting Brain through BBB. Pharmaceutics 2021; 13:1183. [PMID: 34452143 PMCID: PMC8402065 DOI: 10.3390/pharmaceutics13081183] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
The blood-brain barrier (BBB) plays a vital role in the protection and maintenance of homeostasis in the brain. In this way, it is an interesting target as an interface for various types of drug delivery, specifically in the context of the treatment of several neuropathological conditions where the therapeutic agents cannot cross the BBB. Drug toxicity and on-target specificity are among some of the limitations associated with current neurotherapeutics. In recent years, advances in nanodrug delivery have enabled the carrier system containing the active therapeutic drug to target the signaling pathways and pathophysiology that are closely linked to central nervous system (CNS) disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), multiple sclerosis (MS), brain tumor, epilepsy, ischemic stroke, and neurodegeneration. At present, among the nano formulations, solid lipid nanoparticles (SLNs) have emerged as a putative drug carrier system that can deliver the active therapeutics (drug-loaded SLNs) across the BBB at the target site of the brain, offering a novel approach with controlled drug delivery, longer circulation time, target specificity, and higher efficacy, and more importantly, reducing toxicity in a biomimetic way. This paper highlights the synthesis and application of SLNs as a novel nontoxic formulation strategy to carry CNS drugs across the BBB to improve the use of therapeutics agents in treating major neurological disorders in future clinics.
Collapse
Affiliation(s)
- Mantosh Kumar Satapathy
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (M.K.S.); (T.-L.Y.); (J.-S.J.); (R.-D.T.)
| | - Ting-Lin Yen
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (M.K.S.); (T.-L.Y.); (J.-S.J.); (R.-D.T.)
- Department of Medical Research, Cathay General Hospital, Taipei 22174, Taiwan
| | - Jing-Shiun Jan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (M.K.S.); (T.-L.Y.); (J.-S.J.); (R.-D.T.)
| | - Ruei-Dun Tang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (M.K.S.); (T.-L.Y.); (J.-S.J.); (R.-D.T.)
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan;
| | - Jia-Yi Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan;
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei 110, Taiwan
- Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan
| | - Rajeev Taliyan
- Department of Pharmacy, Neuropsychopharmacology Division, Birla Institute of Technology and Science, Pilani 333031, India;
| | - Chih-Hao Yang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (M.K.S.); (T.-L.Y.); (J.-S.J.); (R.-D.T.)
- Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
4
|
Rajpoot K. Solid Lipid Nanoparticles: A Promising Nanomaterial in Drug Delivery. Curr Pharm Des 2020; 25:3943-3959. [PMID: 31481000 DOI: 10.2174/1381612825666190903155321] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/06/2019] [Indexed: 12/27/2022]
Abstract
The solid lipid nanoparticles (SLNs) usually consists of active drug molecules along with solid lipids, surfactants, and/or co-surfactants. They possess some potential features such as nano-size, surface with a free functional group to attach ligands, and as well they prove safe homing for both lipophilic as well as hydrophilic molecules. As far as synthesis is concerned, SLNs can be prepared by employing various techniques viz., homogenization techniques (e.g., high-pressure, high-speed, cold, or hot homogenization), spray drying technique, ultrasonication, solvent emulsification, double emulsion technique, etc. Apart from this, they are characterized by different methods for determining various parameters like particle-size, polydispersity-index, surface morphology, DSC, XRD, etc. SLNs show good stability as well as the ability for surface tailoring with the specific ligand, which makes them a suitable candidate in the therapy of numerous illnesses, especially in the targeting of the cancers. In spite of this, SLNs have witnessed their application via various routes e.g., oral, parenteral, topical, pulmonary, rectal routes, etc. Eventually, SLNs have also shown great potential for delivery of gene/DNA, vaccines, as well as in cosmeceuticals. Hence, SLNs have emerged as a promising nanomaterial for efficient delivery of various Active Pharmaceutical Ingredients (APIs).
Collapse
Affiliation(s)
- Kuldeep Rajpoot
- Pharmaceutical Research Project Laboratory, Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495 009, Chhattisgarh, India
| |
Collapse
|
5
|
Naqvi S, Panghal A, Flora SJS. Nanotechnology: A Promising Approach for Delivery of Neuroprotective Drugs. Front Neurosci 2020; 14:494. [PMID: 32581676 PMCID: PMC7297271 DOI: 10.3389/fnins.2020.00494] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
Abstract
Central nervous system (CNS) disorders especially neurodegenerative disorders are the major challenge for public health and demand the great attention of researchers to protect people against them. In past few decades, different treatment strategies have been adopted, but their therapeutic efficacy are not enough and have only shown partial mitigation of symptoms. Blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BSCFB) guard the CNS from harmful substances and pose as the major challenges in delivering drugs into CNS for treatment of CNS complications such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), stroke, epilepsy, brain tumors, multiple sclerosis (MS), and encephalitis, etc. Nanotechnology has come out as an exciting and promising new platform of treating neurological disorders and has shown great potential to overcome problems related to the conventional treatment approaches. Molecules can be nanoengineered to carry out multiple specific functions such as to cross the BBB, target specific cell or signaling pathway, respond to endogenous stimuli, and act as a vehicle for gene delivery, support nerve regeneration and cell survival. In present review, the role of nanocarrier systems such as liposomes, micelles, solid lipid nanoparticles (SLNPs), dendrimers, and nanoemulsions for delivery of various neurotherapeutic agents has been discussed, besides this, their mechanism of action, and nanoformulation of different neuroprotective agents like curcumin, edaravone, nerve growth factors in CNS disorders like Alzheimer’s, Parkinsonism, epilepsy, stroke, and brain tumors has been reviewed.
Collapse
Affiliation(s)
- Saba Naqvi
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Archna Panghal
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - S J S Flora
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, India
| |
Collapse
|
6
|
Banerjee S, Roy S, Bhaumik KN, Pillai J. Mechanisms of the effectiveness of lipid nanoparticle formulations loaded with anti-tubercular drugs combinations toward overcoming drug bioavailability in tuberculosis. J Drug Target 2019; 28:55-69. [DOI: 10.1080/1061186x.2019.1613409] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Subham Banerjee
- Centre for Biodesign & Diagnostics (CBD), Translational Health Science & Technology Institute (THSTI), Faridabad, India
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, India
| | - Subhadeep Roy
- Centre for Biodesign & Diagnostics (CBD), Translational Health Science & Technology Institute (THSTI), Faridabad, India
| | - Kaushik Nath Bhaumik
- Centre for Biodesign & Diagnostics (CBD), Translational Health Science & Technology Institute (THSTI), Faridabad, India
| | - Jonathan Pillai
- Centre for Biodesign & Diagnostics (CBD), Translational Health Science & Technology Institute (THSTI), Faridabad, India
| |
Collapse
|
7
|
Penetration of the blood-brain barrier by peripheral neuropeptides: new approaches to enhancing transport and endogenous expression. Cell Tissue Res 2018; 375:287-293. [PMID: 30535799 DOI: 10.1007/s00441-018-2959-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/06/2018] [Indexed: 12/15/2022]
Abstract
The blood-brain barrier (BBB) is a structural and functional barrier between the interstitial fluid of the brain and the blood; the barrier maintains the precisely controlled biochemical environment that is necessary for neural function. This constellation of endothelial cells, macrophages, pericytes, and astrocytes forms the neurovascular unit which is the structural and functional unit of the blood-brain barrier. Peptides enter and exit the CNS by transport systems expressed by the capillary endothelial cells of the neurovascular unit. Limiting the transport of peptides and proteins into the brain are efflux transporters like P-gp are transmembrane proteins present on the luminal side of the cerebral capillary endothelium and their function is to promote transit and excretion of drugs from the brain to the blood. Nanocarrier systems have been developed to exploit transport systems for enhanced BBB transport. Recent approaches for enhancing endogenous peptide expression are discussed.
Collapse
|
8
|
Patel M, Souto EB, Singh KK. Advances in brain drug targeting and delivery: limitations and challenges of solid lipid nanoparticles. Expert Opin Drug Deliv 2013; 10:889-905. [DOI: 10.1517/17425247.2013.784742] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Singh H, Bhandari R, Kaur IP. Encapsulation of Rifampicin in a solid lipid nanoparticulate system to limit its degradation and interaction with Isoniazid at acidic pH. Int J Pharm 2013; 446:106-11. [PMID: 23410991 DOI: 10.1016/j.ijpharm.2013.02.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 02/04/2013] [Indexed: 11/16/2022]
Abstract
Rifampicin (RIF), a vital constituent of antitubercular therapy, hydrolyzes at the acidic pH of the stomach. The degradation is further enhanced by its interaction with Isoniazid (INH). Extent of RIF decomposition, in the presence and absence of INH, was determined at pH 1.2 (pH of empty stomach) at 37°C for 4 h (maximum stomach residence time). Both the drugs decomposed at gastric pH (26.5% and 1.43% for RIF and INH respectively). Considering that solid lipid nanoparticles (SLNs) avert drug-drug interaction and also drug degradation, we incorporated RIF into SLNs. Latter reduced its degradation to ~9% (from 26.50% when present alone) and to ~20% (from 48.81% when INH was also present). Subsequent to this, we also incorporated INH into SLNs and the percent degradation of RIF in this combination (RIF SLNs+INH SLNs) further reduced to 12.35%. Furthermore, the degradation of INH in combination with RIF also reduced significantly from 13.2% to 2.7% when both the drugs were encapsulated individually within SLNs. Study therefore highlights the need to develop combinations of antitubercular drugs (ATDs) with caution and also establishes the usefulness of nanoparticulate technology to avoid drug-drug interaction.
Collapse
Affiliation(s)
- Harinder Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | | | | |
Collapse
|
10
|
Pharmacokinetics, tissue distribution and relative bioavailability of isoniazid-solid lipid nanoparticles. Int J Pharm 2012; 441:202-12. [PMID: 23220081 DOI: 10.1016/j.ijpharm.2012.11.042] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/27/2012] [Accepted: 11/28/2012] [Indexed: 01/24/2023]
Abstract
Low levels of isoniazid gain access into plasma following oral administration due to its high aqueous solubility, poor permeability and rapid and extensive hepatic metabolism. Further, a small t(1/2) of 1-4 h indicates its short stay in plasma and the need for repetitive or high doses which may subsequently result in hepatotoxicity and neurotoxicity associated with its use. Isoniazid-solid lipid nanoparticles (SLNs) were prepared to achieve improved bioavailability and prolonged effect, thus minimizing pulsatile plasma concentrations (and associated side effects at peak plasma concentrations). Developed SLNs showed high entrapment efficiency (69%) and small size (d(90) 48.4 nm) such that they are expected to bypass reticulo-endothelial system (RES) pickup resulting in prolonged circulation times and since liver is the major site of metabolism of isoniazid, RES avoidance will reduce its elimination from the body. Single dose (25 mg/kg BW) oral pharmacokinetic studies were performed in plasma and various tissues of rats. A significant improvement (p<0.001) in relative bioavailability in plasma (6 times) and brain (4 times) was observed after administration of isoniazid-SLNs with respect to the free drug solution at the same dose. Insignificant changes in liver concentration coupled with bypass of first pass metabolism and slow release of isoniazid (60%, in 24 h) indicate low incidence of hepatotoxicity. Isoniazid-SLNs showed a 3 times higher LD50.
Collapse
|
11
|
|
12
|
Kakkar V, Mishra AK, Chuttani K, Chopra K, Kaur IP. Delivery of Sesamol-Loaded Solid Lipid Nanoparticles to the Brain for Menopause-Related Emotional and Cognitive Central Nervous System Derangements. Rejuvenation Res 2011; 14:597-604. [DOI: 10.1089/rej.2011.1193] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Vandita Kakkar
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Anil Kumar Mishra
- Government of India, Ministry of Defence, Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Marg, Delhi, India
| | - Krishna Chuttani
- Government of India, Ministry of Defence, Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Marg, Delhi, India
| | - Kanwaljit Chopra
- Department of Pharmacology, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Indu Pal Kaur
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
13
|
Guerrero S, Araya E, Fiedler JL, Arias JI, Adura C, Albericio F, Giralt E, Arias JL, Fernández MS, Kogan MJ. Improving the brain delivery of gold nanoparticles by conjugation with an amphipathic peptide. Nanomedicine (Lond) 2010; 5:897-913. [PMID: 20735225 DOI: 10.2217/nnm.10.74] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND & AIMS Gold nanoparticles (GNPs) have promising applications for drug delivery as well as for the diagnosis and treatment of several pathologies, such as those related to the CNS. However, GNPs are retained in a number of organs, such as the liver and spleen. Owing to their negative charge and/or processes of opsonization, GNPs are retained by the reticuloendothelial system, thereby decreasing their delivery to the brain. It is therefore crucial to modify the nanoparticle surface in order to increase its lipophilicity and reduce its negative charge, thus achieving enhanced delivery to the brain. RESULTS In this article, we have shown that conjugation of 12 nm GNPs with the amphipathic peptide CLPFFD increases the in vivo penetration of these particles to the rat brain. The C(GNP)-LPFFD conjugates showed a smaller negative charge and a greater hydrophobic character than citrate-capped GNPs of the same size. We administered intraperitoneal injections of citrate GNPs and C(GNP)-LPFFD in rats, and determined the gold content in the tissues by neutron activation. Compared with citrate GNPs, the C(GNP)-LPFFD conjugate improved the delivery to the brain, increasing the concentration of gold by fourfold, while simultaneously reducing its retention by the spleen 1 and 2 h after injection. At 24 h, the conjugate was partially cleared from the brain, and mainly accumulated in the liver. The C(GNP)-LPFFD did not alter the integrity of the blood-brain barrier, and had no effect on cell viability.
Collapse
Affiliation(s)
- Simon Guerrero
- Facultad de Ciencias Químicas y Farmaceúticas, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Picone P, Bondi ML, Montana G, Bruno A, Pitarresi G, Giammona G, Di Carlo M. Ferulic acid inhibits oxidative stress and cell death induced by Ab oligomers: improved delivery by solid lipid nanoparticles. Free Radic Res 2010; 43:1133-45. [PMID: 19863373 DOI: 10.1080/10715760903214454] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Oxidative stress and dysfunctional mitochondria are among the earliest events in AD, triggering neurodegeneration. The use of natural antioxidants could be a neuroprotective strategy for blocking cell death. Here, the antioxidant action of ferulic acid (FA) on different paths leading to degeneration of recombinant beta-amyloid peptide (rAbeta42) treated cells was investigated. Further, to improve its delivery, a novel drug delivery system (DDS) was used. Solid lipid nanoparticles (SLNs), empty or containing ferulic acid (FA-SNL), were developed as DDS. The resulting particles had small colloidal size and highly negative surface charge in water. Using neuroblastoma cells and rAbeta42 oligomers, it was demonstrated that free and SLNs-loaded FA recover cell viability. FA treatment, in particular if loaded into SLNs, decreased ROS generation, restored mitochondrial membrane potential (Deltapsi(m)) and reduced cytochrome c release and intrinsic pathway apoptosis activation. Further, FA modulated the expression of Peroxiredoxin, an anti-oxidative protein, and attenuated phosphorylation of ERK1/2 activated by Abeta oligomers.
Collapse
Affiliation(s)
- Pasquale Picone
- Istituto di Biomedicina ed Immunologia Molecolare (IBIM), CNR, via Ugo La Malfa, 153, 90146, Palermo, Italy
| | | | | | | | | | | | | |
Collapse
|
15
|
Craparo EF, Bondì ML, Pitarresi G, Cavallaro G. Nanoparticulate systems for drug delivery and targeting to the central nervous system. CNS Neurosci Ther 2010; 17:670-7. [PMID: 20950327 DOI: 10.1111/j.1755-5949.2010.00199.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Brain delivery is one of the major challenges for the neuropharmaceutical industry since an alarming increase in brain disease incidence is going on. Despite major advances in neuroscience, many potential therapeutic agents are denied access to the central nervous system (CNS) because of the existence of a physiological low permeable barrier, the blood-brain barrier (BBB). To obtain an improvement of drug CNS performance, sophisticated approaches such as nanoparticulate systems are rapidly developing. Many recent data demonstrate that drugs could be transported successfully into the brain using colloidal systems after i.v. injection by several mechanisms such as endocytosis or P-glycoprotein inhibition. This review summarizes the main brain targeted nanoparticulate carriers such as liposomes, lipid nanoparticles, polymeric nanoparticles, and micelles with great potential in drug delivery into the CNS.
Collapse
Affiliation(s)
- Emanuela Fabiola Craparo
- Dipartimento di Chimica e Tecnologie Farmaceutiche, Università di Palermo, via Archirafi, 32-90123 Palermo, Italy.
| | | | | | | |
Collapse
|
16
|
Souto EB, Müller RH. Lipid nanoparticles: effect on bioavailability and pharmacokinetic changes. Handb Exp Pharmacol 2010:115-41. [PMID: 20217528 DOI: 10.1007/978-3-642-00477-3_4] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The main aim of pharmaceutical technology research is the design of successful formulations for effective therapy, taking into account several issues including therapeutic requirements and patient compliance. In this regard, several achievements have been reported with colloidal carriers, in particular with lipid nanoparticles, due to their unique physicochemical properties. For several years these carriers have been showing potential success for several administration routes, namely oral, dermal, parenteral, and, more recently, for pulmonary and brain targeting. The present chapter provides a review of the use of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) to modify the release profile and the pharmacokinetic parameters of active pharmaceutical ingredients (APIs) incorporated in these lipid matrices, aiming to modify the API bioavailability, either upwards or downwards depending on the therapeutic requirement. Definitions of the morphological characteristics, surface properties, and polymorphic structures will also be given, emphasizing their influence on the incorporation parameters of the API, such as yield of production, loading capacity, and encapsulation efficiency.
Collapse
Affiliation(s)
- Eliana B Souto
- Faculty of Health Sciences, Fernando Pessoa University, Rua Carlos da Maia, 296, P-4200-150, Porto, Portugal.
| | | |
Collapse
|
17
|
Bondì ML, Craparo EF, Giammona G, Drago F. Brain-targeted solid lipid nanoparticles containing riluzole: preparation, characterization and biodistribution. Nanomedicine (Lond) 2010; 5:25-32. [DOI: 10.2217/nnm.09.67] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Developments within nanomedicine have revealed a great potential for drug delivery to the brain. In this study nanoparticulate systems as drug carriers for riluzole, with sufficiently high loading capacity and small particle size, were prepared to a reach therapeutic drug level in the brain. Materials & method: Solid lipid nanoparticles containing riluzole have great potential as drug-delivery systems for amyotrophic lateral sclerosis and were produced by using the warm oil-in-water microemulsion technique. The resulting systems obtained were approximately 88 nm in size and negatively charged. Drug-release profiles demonstrated that a drug release was dependent on medium pH. Biodistribution of riluzole blended into solid lipid nanoparticles was carried out after administration to rats and the results were compared with those obtained by riluzole aqueous dispersion administration. Rats were sacrificed at time intervals of 8, 16 and 30 h, and the riluzole concentration in the blood and organs such as the brain, liver, spleen, heart and kidney was determined. Results: It was demonstrated that these solid lipid nanoparticles were able to successfully carry riluzole into the CNS. Moreover, a low drug biodistribution in organs such as the liver, spleen, heart, kidneys and lung was found when riluzole was administered as drug-loaded solid lipid nanoparticles. Conclusion: Riluzole-loaded solid lipid nanoparticles showed colloidal size and high drug loading, a greater efficacy than free riluzole in rats, a higher capability to carry the drug into the brain and a lower indiscriminate biodistribution.
Collapse
Affiliation(s)
- Maria Luisa Bondì
- Istituto per lo Studio dei Materiali Nanostrutturati, sez. di Palermo, Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Emanuela Fabiola Craparo
- Dipartimento di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Palermo, Italy
| | - Gaetano Giammona
- Dipartimento di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Palermo, Italy
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - Filippo Drago
- Dipartimento di Farmacologia Sperimentale e Clinica, Università degli Studi di Catania, Catania, Italy
| |
Collapse
|
18
|
Kulkarni PV, Roney CA, Antich PP, Bonte FJ, Raghu AV, Aminabhavi TM. Quinoline-n-butylcyanoacrylate-based nanoparticles for brain targeting for the diagnosis of Alzheimer's disease. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2009; 2:35-47. [DOI: 10.1002/wnan.59] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Muthu MS, Singh S. Targeted nanomedicines: effective treatment modalities for cancer, AIDS and brain disorders. Nanomedicine (Lond) 2009; 4:105-18. [DOI: 10.2217/17435889.4.1.105] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel technology in the nanomedicine field is expected to develop innovative products as targeted drug-delivery approaches. Targeted drug delivery of various drugs for the treatment of cancer, AIDS and brain disorders is the primary research area in which nanomedicines have a major role and need. This review is concerned with emerging targeted nanomedicines (polymeric nanoparticles, solid lipid nanoparticles, polymeric micelles, dendrimers, liposomes, gold nanoparticles and magnetic nanoparticles) and multifunctional carriers capable of combining targeted drug delivery and imaging (polymeric micelles, dendrimers and magnetic nanoparticles) in the field of pharmaceutical applications. The significant toxicity issues associated with these nanomedicines are also explored here.
Collapse
Affiliation(s)
- Madaswamy S Muthu
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi - 221005, India
| | - Sanjay Singh
- Department of Pharmaceutics, Institute of Technology, Banaras Hindu University, Varanasi - 221005, India
| |
Collapse
|
20
|
Kaur IP, Bhandari R, Bhandari S, Kakkar V. Potential of solid lipid nanoparticles in brain targeting. J Control Release 2008; 127:97-109. [DOI: 10.1016/j.jconrel.2007.12.018] [Citation(s) in RCA: 407] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 12/17/2007] [Indexed: 01/04/2023]
|
21
|
Tosi G, Costantino L, Rivasi F, Ruozi B, Leo E, Vergoni AV, Tacchi R, Bertolini A, Vandelli MA, Forni F. Targeting the central nervous system: In vivo experiments with peptide-derivatized nanoparticles loaded with Loperamide and Rhodamine-123. J Control Release 2007; 122:1-9. [PMID: 17651855 DOI: 10.1016/j.jconrel.2007.05.022] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2007] [Revised: 05/16/2007] [Accepted: 05/21/2007] [Indexed: 10/23/2022]
Abstract
Polymeric nanoparticles (Np) represent one of the most innovative non-invasive approaches for the drug delivery to the central nervous system (CNS). It is known that the ability of the Np to cross the Blood Brain Barrier (BBB), thus allowing the drugs to exert their pharmacological activity in the central nervous district, is linked to their surface characteristics. Recently it was shown that the biocompatible polyester poly(d,l-lactide-co-glycolide) (PLGA) derivatized with the peptide H(2)N-Gly-l-Phe-d-Thr-Gly-l-Phe-l-Leu-l-Ser(O-beta-d-Glucose)-CONH(2) [g7] was a useful starting material for the preparation of Np (g7-Np); moreover, fluorescent studies showed that these Np were able to cross the BBB. In this research, g-7 Np were loaded with Loperamide in order to assess their ability as drug carriers for CNS, and with Rhodamine-123, in order to qualitatively determine their biodistribution in different brain macro-areas. A pharmacological evidence is given that g7-Np are able to cross the BBB, ensuring, for the first time, a sustained release of the embedded drug, and that these Np are able to reach all the brain areas here examined. The ability to enter the CNS appears to be linked to the sequence of the peptidic moiety present on their surface.
Collapse
Affiliation(s)
- G Tosi
- Department of Pharmaceutical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Manjunath K, Venkateswarlu V. Pharmacokinetics, tissue distribution and bioavailability of nitrendipine solid lipid nanoparticles after intravenous and intraduodenal administration. J Drug Target 2007; 14:632-45. [PMID: 17090399 DOI: 10.1080/10611860600888850] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE The aim of this research was to study whether the bioavailability of nitrendipine (NDP) could be improved by administering nitrendipine solid lipid nanoparticles (SLN) duodenally to rats. METHODS Nitrendipine was incorporated into SLN prepared by hot homogenization followed by ultrasonication method. SLN were produced using various triglycerides (trimyristin, tripalmitin and tristearin), soy phosphatidylcholine 95%, poloxamer 188 and charge modifiers (dicetyl phosphate, DCP and stearylamine, SA). Particle size and charge measurements were made with a Malvern Zetasizer. Pharmacokinetics of nitrendipine SLNs (NDP-SLNs) after intravenous (i.v.) and intraduodenal (i.d.) administration to conscious male Wistar rats were studied. Tissue distribution studies of NDP-SLNs were carried out in Swiss albino mice after i.v. administration and compared to nitrendipine suspension (NDP-Susp). RESULTS Average size and zeta potential of SLNs of different lipids, with and without charge modifiers ranged from 101.9 +/- 3.0 to 123.5 +/- 3.0 nm and - 35.1 +/- 0.5 to +34.6 +/- 2.3 mV, respectively. AUC(0-infinity) was increased (up to 4.51-folds) and clearance was decreased (up to 4.54-folds) after i.v. administration of NDP-SLNs with and without charge modifiers compared to NDP-Susp. Effective bioavailability of NDP-SLNs were 2.81-5.35-folds greater after i.d. administration in comparison with that of NDP-Susp. In tested organs, the AUC and MRT of NDP-SLNs were higher than those of NDP-Susp especially in brain, heart and reticuloendothelial cells containing organs. CONCLUSIONS SLN are suitable drug delivery systems for the improvement of bioavailability of nitrendipine. Negatively and positively charged SLN were better taken up by the liver and brain, respectively.
Collapse
Affiliation(s)
- Kopparam Manjunath
- NDDS Laboratory, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, 506 009, Andhra Pradesh, India
| | | |
Collapse
|
23
|
Suresh Reddy J, Venkateswarlu V, Koning GA. Radioprotective effect of transferrin targeted citicoline liposomes. J Drug Target 2006; 14:13-9. [PMID: 16603447 DOI: 10.1080/10611860600613241] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The high level of expression of transferrin receptors (Tf-R) on the surface of endothelial cells of the blood-brain-barrier (BBB) had been widely utilized to deliver drugs to the brain. The primary aim of this study was to use transferrin receptor mediated endocytosis as a pathway for the rational development of holo-transferrin coupled liposomes for drug targeting to the brain. Citicoline is a neuroprotective agent used clinically to treat for instance Parkinson disease, stroke, Alzheimer's disease and brain ischemia. Citicoline does not readily cross the BBB because of its strong polar nature. Hence, citicoline was used as a model drug. (Citicoline liposomes have been prepared using dipalmitoylphosphatidylcholine (DPPC) or distearoylphosphatidylcholine (DSPC) by dry lipid film hydration-extrusion method). The effect of the use of liposomes composed of DPPC or DSPC on their citicoline encapsulation efficiency and their stability in vitro were studied. Transferrin was coupled to liposomes by a technique which involves the prevention of scavenging diferric iron atoms of transferrin. The coupling efficiency of transferrin to the liposomes was studied. In vitro evaluation of transferrin-coupled liposomes was performed for their radioprotective effect in radiation treated cell cultures. In this study, OVCAR-3 cells were used as a model cell type over-expressing the Tf-R and human umbilical vein endothelial cells (HUVEC) as BBB endothelial cell model. The average diameter of DPPC and DSPC liposomes were 138 +/- 6.3 and 79.0 +/- 3.2 nm, respectively. The citicoline encapsulation capacity of DPPC and DSPC liposomes was 81.8 +/- 12.8 and 54.9 +/- 0.04 microg/micromol of phospholipid, respectively. Liposomes prepared from DSPC showed relatively better stability than DPPC liposomes at 37 degrees C and in the presence of serum. Hence, DSPC liposomes were used for transferrin coupling and an average of 46-55 molecules of transferrin were present per liposome. Free citicoline has shown radioprotective effect at higher doses tested. Interestingly, encapsulation of citicoline in pegylated liposomes significantly improved the radioprotective effect by 4-fold compared to free citicoline in OVCAR-3 but not in HUVEC. Further, citicoline encapsulation in transferrin-coupled liposomes has significantly improved the radioprotective effect by approximately 8-fold in OVCAR-3 and 2-fold in HUVEC cells with respect to the free drug. This is likely due to the entry of citicoline into cells via transferrin receptor mediated endocytosis. In conclusion, our results suggest that low concentrations of citicoline encapsulated in transferrin-coupled liposomes could offer therapeutic benefit in treating stroke compared to free citicoline.
Collapse
Affiliation(s)
- Jannapally Suresh Reddy
- NDDS Laboratory, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, AP, 506 009, India
| | | | | |
Collapse
|
24
|
Manjunath K, Venkateswarlu V. Pharmacokinetics, tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration. J Control Release 2005; 107:215-28. [PMID: 16014318 DOI: 10.1016/j.jconrel.2005.06.006] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 04/11/2005] [Accepted: 06/13/2005] [Indexed: 11/18/2022]
Abstract
Clozapine, a lipophilic effective atypical antipsychotic drug, has very poor oral bioavailability (<27%) due to first pass effect. Clozapine solid lipid nanoparticles have been developed using various triglycerides (trimyristin, tripalmitin and tristearin), soylecithin 95%, poloxamer 188 and stearylamine as a positive charge inducer by hot homogenization followed by ultrasonication method. Particle size and charge measurements were made with Malvern Zetasizer. Pharmacokinetics of clozapine incorporated in solid lipid nanoparticles (SLNs), after intravenous (i.v.) administration to conscious male Wistar rats were studied. The aim of this research was to find out whether the bioavailability of clozapine can be improved by administering clozapine SLN duodenally to rats. Tissue distribution studies of clozapine SLN and suspension were carried out in Swiss albino mice. Average size and zeta potential of SLNs of different lipids with stearylamine ranged from 96.7+/-3.8 to 163.3+/-0.7 nm and 21.3+/-1.3 to 33.2+/-0.6 mV, respectively. AUC((0-infinity)) was increased (up to 2.91-fold) and clearance was decreased (up to 2.93-fold) when clozapine entrapped in SLNs with stearylamine were administered intravenously. Bioavailability of clozapine SLNs were 2.45- to 4.51-fold after intraduodenal administration compared with that of clozapine suspension. In tested organs, the AUC and MRT of clozapine SLNs were higher than those of clozapine suspension especially in brain and reticuloendothelial cell-containing organs. These results indicate that SLN are suitable drug delivery system for the improvement of bioavailability of lipophilic drugs such as clozapine.
Collapse
Affiliation(s)
- Kopparam Manjunath
- NDDS Laboratory, University College of Pharmaceutical Sciences, Kakatiya University, Warangal 506 009, Andhra Pradesh, India
| | | |
Collapse
|
25
|
Costantino L, Gandolfi F, Tosi G, Rivasi F, Vandelli MA, Forni F. Peptide-derivatized biodegradable nanoparticles able to cross the blood-brain barrier. J Control Release 2005; 108:84-96. [PMID: 16154222 DOI: 10.1016/j.jconrel.2005.07.013] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 07/14/2005] [Accepted: 07/18/2005] [Indexed: 11/27/2022]
Abstract
Injectable nanoparticulate drug carriers (Np) able to cross the blood-brain barrier (BBB) have important potential applications for the treatment of diseases that affect the central nervous system (CNS). With the aim to create a system able to address Np to the CNS, we synthesized conjugates between a biodegradable copolymer, poly(D,L-lactide-co-glycolide) (PLGA), and five short peptides, by means of an amidic linkage. These peptides, that are similar to synthetic opioid peptides, were synthesized in turn by means of Fmoc solid-phase peptide synthesis. The new five modified copolymers thus obtained turned out to be valuable starting material for the preparation of Np; these were made fluorescent, in order to allow their localization after their administration, by inclusion of a fluorescent probe. The Np thus prepared were characterized (morphology, size and z-potential) and were shown to possess the peptidic moieties on their surface, as evidenced by ESCA spectroscopy. Then, their ability to cross the BBB was assessed by the in vivo Rat Brain Perfusion Technique and, in one case, by means of a systemic administration (rat femoral vein injection). Fluorescent and confocal microscopy studies showed that while PLGA Np are unable to cross the BBB, for the first time these solid Np surface-modified with peptides were shown to be able to cross the BBB.
Collapse
Affiliation(s)
- Luca Costantino
- Dipartimento di Scienze Farmaceutiche, University of Modena and Reggio Emilia, Via Campi 183, 41100 Modena, Italy
| | | | | | | | | | | |
Collapse
|