1
|
Shu DY, Chaudhary S, Cho KS, Lennikov A, Miller WP, Thorn DC, Yang M, McKay TB. Role of Oxidative Stress in Ocular Diseases: A Balancing Act. Metabolites 2023; 13:187. [PMID: 36837806 PMCID: PMC9960073 DOI: 10.3390/metabo13020187] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Redox homeostasis is a delicate balancing act of maintaining appropriate levels of antioxidant defense mechanisms and reactive oxidizing oxygen and nitrogen species. Any disruption of this balance leads to oxidative stress, which is a key pathogenic factor in several ocular diseases. In this review, we present the current evidence for oxidative stress and mitochondrial dysfunction in conditions affecting both the anterior segment (e.g., dry eye disease, keratoconus, cataract) and posterior segment (age-related macular degeneration, proliferative vitreoretinopathy, diabetic retinopathy, glaucoma) of the human eye. We posit that further development of therapeutic interventions to promote pro-regenerative responses and maintenance of the redox balance may delay or prevent the progression of these major ocular pathologies. Continued efforts in this field will not only yield a better understanding of the molecular mechanisms underlying the pathogenesis of ocular diseases but also enable the identification of novel druggable redox targets and antioxidant therapies.
Collapse
Affiliation(s)
- Daisy Y. Shu
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Suman Chaudhary
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Kin-Sang Cho
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Anton Lennikov
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - William P. Miller
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - David C. Thorn
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Menglu Yang
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Tina B. McKay
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
2
|
Liu Y, Bell BA, Song Y, Zhang K, Anderson B, Axelsen PH, Bohannan W, Agbaga M, Park HG, James G, Brenna JT, Schmidt K, Dunaief JL, Shchepinov MS. Deuterated docosahexaenoic acid protects against oxidative stress and geographic atrophy-like retinal degeneration in a mouse model with iron overload. Aging Cell 2022; 21:e13579. [PMID: 35257475 PMCID: PMC9009113 DOI: 10.1111/acel.13579] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/24/2022] [Accepted: 02/11/2022] [Indexed: 01/03/2023] Open
Abstract
Oxidative stress plays a central role in age-related macular degeneration (AMD). Iron, a potent generator of hydroxyl radicals through the Fenton reaction, has been implicated in AMD. One easily oxidized molecule is docosahexaenoic acid (DHA), the most abundant polyunsaturated fatty acid in photoreceptor membranes. Oxidation of DHA produces toxic oxidation products including carboxyethylpyrrole (CEP) adducts, which are increased in the retinas of AMD patients. In this study, we hypothesized that deuterium substitution on the bis-allylic sites of DHA in photoreceptor membranes could prevent iron-induced retinal degeneration by inhibiting oxidative stress and lipid peroxidation. Mice were fed with either DHA deuterated at the oxidation-prone positions (D-DHA) or control natural DHA and then given an intravitreal injection of iron or control saline. Orally administered D-DHA caused a dose-dependent increase in D-DHA levels in the neural retina and retinal pigment epithelium (RPE) as measured by mass spectrometry. At 1 week after iron injection, D-DHA provided nearly complete protection against iron-induced retinal autofluorescence and retinal degeneration, as determined by in vivo imaging, electroretinography, and histology. Iron injection resulted in carboxyethylpyrrole conjugate immunoreactivity in photoreceptors and RPE in mice fed with natural DHA but not D-DHA. Quantitative PCR results were consistent with iron-induced oxidative stress, inflammation, and retinal cell death in mice fed with natural DHA but not D-DHA. Taken together, our findings suggest that DHA oxidation is central to the pathogenesis of iron-induced retinal degeneration. They also provide preclinical evidence that dosing with D-DHA could be a viable therapeutic strategy for retinal diseases involving oxidative stress.
Collapse
Affiliation(s)
- Yingrui Liu
- F.M. Kirby Center for Molecular OphthalmologyScheie Eye InstitutePerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Brent A. Bell
- F.M. Kirby Center for Molecular OphthalmologyScheie Eye InstitutePerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ying Song
- F.M. Kirby Center for Molecular OphthalmologyScheie Eye InstitutePerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Kevin Zhang
- F.M. Kirby Center for Molecular OphthalmologyScheie Eye InstitutePerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Brandon Anderson
- F.M. Kirby Center for Molecular OphthalmologyScheie Eye InstitutePerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Paul H. Axelsen
- Department of PharmacologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Whitney Bohannan
- Departments of Cell Biology and OphthalmologyUniversity of Oklahoma Health Sciences Center and the Dean McGee Eye InstituteOklahoma CityOklahomaUSA
| | - Martin‐Paul Agbaga
- Departments of Cell Biology and OphthalmologyUniversity of Oklahoma Health Sciences Center and the Dean McGee Eye InstituteOklahoma CityOklahomaUSA
| | - Hui Gyu Park
- Dell Pediatric Research InstituteUniversity of Texas at AustinAustinTexasUSA
| | - Genevieve James
- Dell Pediatric Research InstituteUniversity of Texas at AustinAustinTexasUSA
| | - J. Thomas Brenna
- Dell Pediatric Research InstituteUniversity of Texas at AustinAustinTexasUSA
| | | | - Joshua L. Dunaief
- F.M. Kirby Center for Molecular OphthalmologyScheie Eye InstitutePerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | |
Collapse
|
3
|
Ren J, Ren A, Deng X, Huang Z, Jiang Z, Li Z, Gong Y. Long-Chain Polyunsaturated Fatty Acids and Their Metabolites Regulate Inflammation in Age-Related Macular Degeneration. J Inflamm Res 2022; 15:865-880. [PMID: 35173457 PMCID: PMC8842733 DOI: 10.2147/jir.s347231] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
Age-related macular degeneration (AMD) is a blinding eye disease, whose incidence strongly increases with ages. The etiology of AMD is complex, including aging, abnormal lipid metabolism, chronic inflammation and oxidative stress. Long-chain polyunsaturated fatty acids (LCPUFA) are essential for ocular structures and functions. This review summarizes the regulatory effects of LCPUFA on inflammation in AMD. LCPUFA are related to aging, autophagy and chronic inflammation. They are metabolized to pro- and anti-inflammatory metabolites by various enzymes. These metabolites stimulate inflammation in response to oxidative stress, causing innate and acquired immune responses. This review also discusses the possible clinical applications, which provided novel targets for the prevention and treatment of AMD and other age-related diseases.
Collapse
Affiliation(s)
- Jiangbo Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Anli Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Xizhi Deng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zhengrong Huang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Ziyu Jiang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zhi Li
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Human Genetics Resource Preservation Center of Wuhan University, Wuhan University, Wuhan, Hubei, People’s Republic of China
- Correspondence: Yan Gong; Zhi Li, Tel +86 27 6781 1461; +86 27 6781 2622, Fax +86 27 6781 1471; +86 27 6781 3133, Email ;
| |
Collapse
|
4
|
Lashkari K, Teague GC, Beattie U, Betts J, Kumar S, McLaughlin MM, López FJ. Plasma biomarkers of the amyloid pathway are associated with geographic atrophy secondary to age-related macular degeneration. PLoS One 2020; 15:e0236283. [PMID: 32764794 PMCID: PMC7413518 DOI: 10.1371/journal.pone.0236283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022] Open
Abstract
Geographic atrophy (GA) is an advanced form of dry age-related macular degeneration (AMD), in which local inflammation and hyperactivity of the complement pathway have been implicated in its pathophysiology. This study explores whether any surrogate biomarkers are specifically associated with GA. Plasma from subjects with GA, intermediate dry AMD and non-AMD control were evaluated in 2 cohorts. Cohort 1 was assayed in a 320-analyte Luminex library. Statistical analysis was performed using non-parametric and parametric methods (Kruskal-Wallis, principal component analysis, partial least squares and multivariate analysis of variance (MANOVA) and univariate ANCOVAs). Bioinformatic analysis was conducted and identified connections to the amyloid pathway. Statistically significant biomarkers identified in Cohort 1 were then re-evaluated in Cohort 2 using individual ELISA and multiplexing. Of 320 analytes in Cohort 1, 273 were rendered measurable, of which 56 were identified as changing. Among these markers, 40 were identified in univariate ANCOVAs. Serum amyloid precursor protein (sAPP) was analyzed by a separate ELISA and included in further analyses. The 40 biomarkers, sAPP and amyloid-β (Aβ) (1–42) (included for comparison) were evaluated in Cohort 2. This resulted in 11 statistically significant biomarkers, including sAPP and Aβ(1–40), but not Aβ(1–42). Other biomarkers identified included serum proteases- tissue plasminogen activator, tumor-associated trypsinogen inhibitor, matrix metalloproteinases 7 and 9, and non-proteases- insulin-like growth factor binding protein 6, AXL receptor tyrosine kinase, omentin, pentraxin-3 and osteopontin. Findings suggest that there is a preferential processing of APP to Aβ(1–40) over Aβ(1–42), and a potential role for the carboxylase activity of the γ-secretase protein, which preferentially splices sAPPβ to Aβ(1–40). Other markers are associated with the breakdown and remodeling of the extracellular matrix, and loss of homeostasis, possibly within the photoreceptor-retinal pigment epithelium-choriocapillaris complex. These data suggest novel disease pathways associated with GA pathogenesis and could provide potential novel targets for treatment of GA.
Collapse
Affiliation(s)
- Kameran Lashkari
- Schepens Eye Research Institute, Mass Eye & Ear, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| | - Gianna C. Teague
- Schepens Eye Research Institute, Mass Eye & Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ursula Beattie
- Schepens Eye Research Institute, Mass Eye & Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joanna Betts
- Alternative Discovery & Development, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - Sanjay Kumar
- Alternative Discovery & Development, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - Megan M. McLaughlin
- Alternative Discovery & Development, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - Francisco J. López
- Alternative Discovery & Development, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| |
Collapse
|
5
|
Kubicka-Trząska A, Karska-Basta I, Żuber-Łaskawiec K. Autophagy: A new insight into pathogenesis and treatment possibilities in age-related macular degeneration. POSTEP HIG MED DOSW 2020. [DOI: 10.5604/01.3001.0014.2495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Age-related macular degeneration (AMD) is a significant problem in healthcare, because it is a leading cause of central vision loss in individuals over 50 years old in well-developed countries. Pathogenesis of AMD is multifactorial and still not completely understood. Proven risk factors include the following: natural senescence of retina, oxidative stress, complement activation, chronic subretinal inflammatory reaction, genetic and environmental factors. Data on links between autophagy and AMD development are being raised. Autophagy is a cellular
process involving the degradation of long-lived proteins and damaged fragments and components
of cells; it is responsible for the maintenance of dynamic intracellular homeostasis
and it enables cell survival under stress conditions. Disturbances of autophagy mechanisms,
i.e. its activation or inhibition, may lead to the development of many various pathologies.
Thus, autophagy plays a dual role, as a mechanism responsible for protecting or killing cells.
The paper describes autophagy mechanisms and their role in the natural process of retinal cells
senescence and presents the autophagy impairment as a crucial cause of AMD development.
We also describe the impact of intravitreal anti-VEGF therapy on retinal autophagy mechanisms
and potential new therapeutic modalities for AMD based on autophagy modulation.
Collapse
Affiliation(s)
- Agnieszka Kubicka-Trząska
- Uniwersytet Jagielloński Collegium Medicum, Wydział Lekarski, Katedra Okulistyki, Klinika Okulistyki i Onkologii Okulistycznej Szpitala Uniwersyteckiego w Krakowie
| | - Izabella Karska-Basta
- Uniwersytet Jagielloński Collegium Medicum, Wydział Lekarski, Katedra Okulistyki, Klinika Okulistyki i Onkologii Okulistycznej Szpitala Uniwersyteckiego w Krakowie
| | - Katarzyna Żuber-Łaskawiec
- Uniwersytet Jagielloński Collegium Medicum, Wydział Lekarski, Katedra Okulistyki, Klinika Okulistyki i Onkologii Okulistycznej Szpitala Uniwersyteckiego w Krakowie
| |
Collapse
|
6
|
Ardeljan D, Chan CC. Aging is not a disease: distinguishing age-related macular degeneration from aging. Prog Retin Eye Res 2013; 37:68-89. [PMID: 23933169 PMCID: PMC3830684 DOI: 10.1016/j.preteyeres.2013.07.003] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 07/29/2013] [Accepted: 07/30/2013] [Indexed: 12/18/2022]
Abstract
Age-related macular degeneration (AMD) is a disease of the outer retina, characterized most significantly by atrophy of photoreceptors and retinal pigment epithelium accompanied with or without choroidal neovascularization. Development of AMD has been recognized as contingent on environmental and genetic risk factors, the strongest being advanced age. In this review, we highlight pathogenic changes that destabilize ocular homeostasis and promote AMD development. With normal aging, photoreceptors are steadily lost, Bruch's membrane thickens, the choroid thins, and hard drusen may form in the periphery. In AMD, many of these changes are exacerbated in addition to the development of disease-specific factors such as soft macular drusen. Para-inflammation, which can be thought of as an intermediate between basal and robust levels of inflammation, develops within the retina in an attempt to maintain ocular homeostasis, reflected by increased expression of the anti-inflammatory cytokine IL-10 coupled with shifts in macrophage plasticity from the pro-inflammatory M1 to the anti-inflammatory M2 polarization. In AMD, imbalances in the M1 and M2 populations together with activation of retinal microglia are observed and potentially contribute to tissue degeneration. Nonetheless, the retina persists in a state of chronic inflammation and increased expression of certain cytokines and inflammasomes is observed. Since not everyone develops AMD, the vital question to ask is how the body establishes a balance between normal age-related changes and the pathological phenotypes in AMD.
Collapse
Affiliation(s)
- Daniel Ardeljan
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|