1
|
Martin TJ, Sims NA, Seeman E. Physiological and Pharmacological Roles of PTH and PTHrP in Bone Using Their Shared Receptor, PTH1R. Endocr Rev 2021; 42:383-406. [PMID: 33564837 DOI: 10.1210/endrev/bnab005] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Indexed: 12/13/2022]
Abstract
Parathyroid hormone (PTH) and the paracrine factor, PTH-related protein (PTHrP), have preserved in evolution sufficient identities in their amino-terminal domains to share equivalent actions upon a common G protein-coupled receptor, PTH1R, that predominantly uses the cyclic adenosine monophosphate-protein kinase A signaling pathway. Such a relationship between a hormone and local factor poses questions about how their common receptor mediates pharmacological and physiological actions of the two. Mouse genetic studies show that PTHrP is essential for endochondral bone lengthening in the fetus and is essential for bone remodeling. In contrast, the main postnatal function of PTH is hormonal control of calcium homeostasis, with no evidence that PTHrP contributes. Pharmacologically, amino-terminal PTH and PTHrP peptides (teriparatide and abaloparatide) promote bone formation when administered by intermittent (daily) injection. This anabolic effect is remodeling-based with a lesser contribution from modeling. The apparent lesser potency of PTHrP than PTH peptides as skeletal anabolic agents could be explained by lesser bioavailability to PTH1R. By contrast, prolongation of PTH1R stimulation by excessive dosing or infusion, converts the response to a predominantly resorptive one by stimulating osteoclast formation. Physiologically, locally generated PTHrP is better equipped than the circulating hormone to regulate bone remodeling, which occurs asynchronously at widely distributed sites throughout the skeleton where it is needed to replace old or damaged bone. While it remains possible that PTH, circulating within a narrow concentration range, could contribute in some way to remodeling and modeling, its main physiological role is in regulating calcium homeostasis.
Collapse
Affiliation(s)
- T John Martin
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,The University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,The University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Ego Seeman
- The University of Melbourne, Department of Medicine at Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|
2
|
Ho PWM, Chan AS, Pavlos NJ, Sims NA, Martin TJ. Brief exposure to full length parathyroid hormone-related protein (PTHrP) causes persistent generation of cyclic AMP through an endocytosis-dependent mechanism. Biochem Pharmacol 2019; 169:113627. [PMID: 31476292 DOI: 10.1016/j.bcp.2019.113627] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022]
Abstract
Parathyroid hormone (PTH)-related protein (PTHrP) (gene name Pthlh) was discovered as the factor responsible for the humoral hypercalcemia of malignancy. It shares such sequence similarity with PTH in the amino-terminal region that the two are equally able to act through a single G protein-coupled receptor, PTH1R. A number of biological activities are ascribed to domains of PTHrP beyond the amino-terminal domain. PTH functions as a circulating hormone, but PTHrP is generated locally in many tissues including bone, where it acts as a paracrine factor on osteoblasts and osteocytes. The present study compares how PTH and PTHrP influence cyclic AMP (cAMP) formation through adenylyl cyclase, the first event in cell activation through PTH1R. Brief exposure to full length PTHrP(1-141) in several osteoblastic cell culture systems was followed by sustained adenylyl cyclase activity for more than an hour after ligand washout. This effect was dose-dependent and was not found with shorter PTHrP or PTH peptides even though they were fully able to activate adenylyl cyclase with acute treatment. The persistent activation response to PTHrP(1-141) was seen also with later events in the cAMP/PKA pathway, including persistent activation of CRE-luciferase and sustained regulation of several CREB-responsive mRNAs, up to 24 h after the initial exposure. Pharmacologic blockade of endocytosis prevented the persistent activation of cAMP and gene responses. We conclude that full length PTHrP, the likely local physiological effector in bone, differs in intracellular action to PTH by undergoing endosomal translocation to induce a prolonged adenylyl cyclase activation in its target cells.
Collapse
Affiliation(s)
- Patricia W M Ho
- Bone Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia
| | - Audrey S Chan
- Bone Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia; School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Nathan J Pavlos
- School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Natalie A Sims
- Bone Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia; Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Melbourne, Victoria 3065, Australia
| | - T John Martin
- Bone Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia; Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Melbourne, Victoria 3065, Australia.
| |
Collapse
|
3
|
Wu X, Li S, Xue P, Li Y. Liraglutide Inhibits the Apoptosis of MC3T3-E1 Cells Induced by Serum Deprivation through cAMP/PKA/β-Catenin and PI3K/AKT/GSK3β Signaling Pathways. Mol Cells 2018; 41:234-243. [PMID: 29463067 PMCID: PMC5881097 DOI: 10.14348/molcells.2018.2340] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 01/06/2023] Open
Abstract
In recent years, the interest towards the relationship between incretins and bone has been increasing. Previous studies have suggested that glucagon-like peptide-1 (GLP-1) and its receptor agonists exert beneficial anabolic influence on skeletal metabolism, such as promoting proliferation and differentiation of osteoblasts via entero-osseous-axis. However, little is known regarding the effects of GLP-1 on osteoblast apoptosis and the underlying mechanisms involved. Thus, in the present study, we investigated the effects of liraglutide, a glucagon-like peptide-1 receptor agonist, on apoptosis of murine MC3T3-E1 osteoblastic cells. We confirmed the presence of GLP-1 receptor (GLP-1R) in MC3T3-E1 cells. Our data demonstrated that liraglutide inhibited the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation, as detected by Annexin V/PI and Hoechst 33258 staining and ELISA assays. Moreover, liraglutide upregulated Bcl-2 expression and downregulated Bax expression and caspase-3 activity at intermediate concentration (100 nM) for maximum effect. Further study suggested that liraglutide stimulated the phosphorylation of AKT and enhanced cAMP level, along with decreased phosphorylation of GSK3β, increased β-catenin phosphorylation at Ser675 site and upregulated nuclear β-catenin content and transcriptional activity. Pretreatment of cells with the PI3K inhibitor LY294002, PKA inhibitor H89, and siRNAs GLP-1R, β-catenin abrogated the liraglutide-induced activation of cAMP, AKT, β-catenin, respectively. In conclusion, these findings illustrate that activation of GLP-1 receptor by liraglutide inhibits the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation through cAMP/PKA/β-catenin and PI3K/Akt/GSK3β signaling pathways.
Collapse
Affiliation(s)
- Xuelun Wu
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei Province,
PR China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang 050051, Hebei Province,
PR China
| | - Shilun Li
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang 050051, Hebei Province,
PR China
| | - Peng Xue
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei Province,
PR China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang 050051, Hebei Province,
PR China
| | - Yukun Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei Province,
PR China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang 050051, Hebei Province,
PR China
| |
Collapse
|
4
|
Chen X, Hausman BS, Luo G, Zhou G, Murakami S, Rubin J, Greenfield EM. Protein kinase inhibitor γ reciprocally regulates osteoblast and adipocyte differentiation by downregulating leukemia inhibitory factor. Stem Cells 2015; 31:2789-99. [PMID: 23963683 DOI: 10.1002/stem.1524] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 07/22/2013] [Accepted: 07/22/2013] [Indexed: 12/26/2022]
Abstract
The protein kinase inhibitor (Pki) gene family inactivates nuclear protein kinase A (PKA) and terminates PKA-induced gene expression. We previously showed that Pkig is the primary family member expressed in osteoblasts and that Pkig knockdown increases the effects of parathyroid hormone and isoproterenol on PKA activation, gene expression, and inhibition of apoptosis. Here, we determined whether endogenous levels of Pkig regulate osteoblast differentiation. Pkig is the primary family member in murine embryonic fibroblasts (MEFs), murine marrow-derived mesenchymal stem cells, and human mesenchymal stem cells. Pkig deletion increased forskolin-dependent nuclear PKA activation and gene expression and Pkig deletion or knockdown increased osteoblast differentiation. PKA signaling is known to stimulate adipogenesis; however, adipogenesis and osteogenesis are often reciprocally regulated. We found that the reciprocal regulation predominates over the direct effects of PKA since adipogenesis was decreased by Pkig deletion or knockdown. Pkig deletion or knockdown also simultaneously increased osteogenesis and decreased adipogenesis in mixed osteogenic/adipogenic medium. Pkig deletion increased PKA-induced expression of leukemia inhibitory factor (Lif) mRNA and LIF protein. LIF neutralizing antibodies inhibited the effects on osteogenesis and adipogenesis of either Pkig deletion in MEFs or PKIγ knockdown in both murine and human mesenchymal stem cells. Collectively, our results show that endogenous levels of Pkig reciprocally regulate osteoblast and adipocyte differentiation and that this reciprocal regulation is mediated in part by LIF. Stem Cells 2013;31:2789-2799.
Collapse
Affiliation(s)
- Xin Chen
- Department of Orthopaedics, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Swift JM, Swift SN, Allen MR, Bloomfield SA. Beta-1 adrenergic agonist treatment mitigates negative changes in cancellous bone microarchitecture and inhibits osteocyte apoptosis during disuse. PLoS One 2014; 9:e106904. [PMID: 25211027 PMCID: PMC4161377 DOI: 10.1371/journal.pone.0106904] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/06/2014] [Indexed: 11/23/2022] Open
Abstract
The sympathetic nervous system (SNS) plays an important role in mediating bone remodeling. However, the exact role that beta-1 adrenergic receptors (beta1AR) have in this process has not been elucidated. We have previously demonstrated the ability of dobutamine (DOB), primarily a beta1AR agonist, to inhibit reductions in cancellous bone formation and mitigate disuse-induced loss of bone mass. The purpose of this study was to characterize the independent and combined effects of DOB and hindlimb unloading (HU) on cancellous bone microarchitecture, tissue-level bone cell activity, and osteocyte apoptosis. Male Sprague-Dawley rats, aged 6-mos, were assigned to either normal cage activity (CC) or HU (n = 18/group) for 28 days. Animals were administered either daily DOB (4 mg/kg BW/d) or an equal volume of saline (VEH) (n = 9/gp). Unloading resulted in significantly lower distal femur cancellous BV/TV (−33%), Tb.Th (−11%), and Tb.N (−25%) compared to ambulatory controls (CC-VEH). DOB treatment during HU attenuated these changes in cancellous bone microarchitecture, resulting in greater BV/TV (+29%), Tb.Th (+7%), and Tb.N (+21%) vs. HU-VEH. Distal femur cancellous vBMD (+11%) and total BMC (+8%) were significantly greater in DOB- vs. VEH-treated unloaded rats. Administration of DOB during HU resulted in significantly greater osteoid surface (+158%) and osteoblast surface (+110%) vs. HU-VEH group. Furthermore, Oc.S/BS was significantly greater in HU-DOB (+55%) vs. CC-DOB group. DOB treatment during unloading fully restored bone formation, resulting in significantly greater bone formation rate (+200%) than in HU-VEH rats. HU resulted in an increased percentage of apoptotic cancellous osteocytes (+85%), reduced osteocyte number (−16%), lower percentage of occupied osteocytic lacunae (−30%) as compared to CC-VEH, these parameters were all normalized with DOB treatment. Altogether, these data indicate that beta1AR agonist treatment during disuse mitigates negative changes in cancellous bone microarchitecture and inhibits increases in osteocyte apoptosis.
Collapse
Affiliation(s)
- Joshua M. Swift
- Departments of Health and Kinesiology, Texas A & M University, College Station, Texas, United States of America
- * E-mail:
| | - Sibyl N. Swift
- Intercollegiate Faculty of Nutrition, Texas A & M University, College Station, Texas, United States of America
| | - Matthew R. Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine (IUSM), Indianapolis, Indiana, United States of America
| | - Susan A. Bloomfield
- Departments of Health and Kinesiology, Texas A & M University, College Station, Texas, United States of America
- Intercollegiate Faculty of Nutrition, Texas A & M University, College Station, Texas, United States of America
| |
Collapse
|
6
|
Swift JM, Hogan HA, Bloomfield SA. β-1 adrenergic agonist mitigates unloading-induced bone loss by maintaining formation. Med Sci Sports Exerc 2014; 45:1665-73. [PMID: 23470310 DOI: 10.1249/mss.0b013e31828d39bc] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Recent data indicate a direct relationship between the sympathetic nervous system and bone metabolism. The purpose of this study was to evaluate the effects of a beta-1 adrenergic (Adrb1) agonist, dobutamine (DOB), on disuse-induced changes in bone integrity during 28 d of hindlimb unloading (HU). METHODS Male Sprague-Dawley rats, age 6 months, were assigned to either a normal cage activity (CC) or HU (n = 24/group). Animals were given one daily bolus dose (4 mg·kg body weight a day) of DOB (n = 12) or an equal volume of saline (VEH, n = 12). RESULTS In vivo peripheral quantitative computed tomography scans revealed a 9% loss in proximal tibia metaphysis (PTM) volumetric bone mineral density (vBMD) over 28 d of disuse. DOB administration during HU significantly attenuated reductions in PTM vBMD and inhibited reductions in mid-diaphysis tibia cross-sectional moment of inertia. A significant decline in PTM bone formation rate in the HU-VEH group (-56% vs CC-VEH) was completely abolished in the HU-DOB group. Significant reductions in strength of the femoral shaft and neck in the HU-VEH group (14% and 15%, respectively) were prevented with DOB treatment. CONCLUSION In conclusion, DOB administration during HU effectively attenuates significant declines in total vBMD at PTM by mitigating associated decrements in bone formation rate. Positive effects of DOB were observed only in unloaded animals, with no effects observed in normal weight-bearing rats. These data provide evidence for the importance of Adrb1 signaling in maintaining osteoblast function during periods of mechanical unloading.
Collapse
Affiliation(s)
- Joshua M Swift
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA
| | | | | |
Collapse
|
7
|
Trivedi R, Goswami R, Chattopadhyay N. Investigational anabolic therapies for osteoporosis. Expert Opin Investig Drugs 2010; 19:995-1005. [PMID: 20629616 DOI: 10.1517/13543784.2010.501077] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Anabolic therapy, or stimulating the function of bone-forming osteoblasts, is the preferred pharmacological intervention for osteoporosis. AREAS COVERED IN THIS REVIEW We reviewed bone anabolic agents currently under active investigation. The bone anabolic potential of IGF-I and parathyroid hormone-related protein is discussed in the light of animal data and human studies. We also discuss the use of antagonists of the calcium-sensing receptor (calcilytics) as orally administered small molecules capable of transiently elevating serum parathyroid hormone (PTH). Further, we reviewed novel anabolic agents targeting members of the wingless tail (Wnt) signaling family that regulate bone formation including DKK-1, sclerostin, Thp1, and glycogen synthase kinase 3beta. We have also followed up on the promise shown by beta-blockers in modulating the activity of sympathetic nervous system, thus affecting bone anabolism. We give critical consideration to neutralizing the activity of activin A, a negative regulator of bone mass by soluble activin receptor IIA, as a strategy to promote bone formation. WHAT THE READER WILL GAIN Update on various strategies to promote osteoblast function currently under evaluation. TAKE HOME MESSAGE In spite of favorable results in experimental models, none of these strategies has yet achieved the ultimate goal of providing an alternative to injectable PTH, the sole anabolic therapy in clinical use.
Collapse
Affiliation(s)
- Ritu Trivedi
- Central Drug Research Institute (Council of Scientific and Industrial Research), Division of Endocrinology, Lucknow, India.
| | | | | |
Collapse
|
8
|
Abstract
Prolongation of cell survival through prevention of apoptosis is considered to be a significant factor leading to anabolic responses in bone. The current studies were carried out to determine the role of the small GTPase, RhoA, in osteoblast apoptosis, since RhoA has been found to be critical for cell survival in other tissues. We investigated the effects of inhibitors and activators of RhoA signaling on osteoblast apoptosis. In addition, we assessed the relationship of this pathway to parathyroid hormone (PTH) effects on apoptotic signaling and cell survival. RhoA is activated by geranylgeranylation, which promotes its membrane anchoring. In serum-starved MC3T3-E1 osteoblastic cells, inhibition of geranylgeranylation with geranylgeranyl transferase I inhibitors increased activity of caspase-3, a component step in the apoptosis cascade, and increased cell death. Dominant negative RhoA and Y27632, an inhibitor of the RhoA effector Rho kinase, also increased caspase-3 activity. A geranylgeranyl group donor, geranylgeraniol, antagonized the effect of the geranylgeranyl transferase I inhibitor GGTI-2166, but could not overcome the effect of the Rho kinase inhibitor. PTH 1-34, a potent anti-apoptotic agent, completely antagonized the stimulatory effects of GGTI-2166, dominant negative RhoA, and Y27632, on caspase-3 activity. The results suggest that RhoA signaling is essential for osteoblastic cell survival but that the survival effects of PTH 1-34 are independent of this pathway.
Collapse
Affiliation(s)
- Tomohiko Yoshida
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Mary F. Clark
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Paula H. Stern
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|