1
|
Li X, Tang Y, Ma B, Wang Z, Jiang J, Hou S, Wang S, Zhang J, Deng M, Duan Z, Tang X, Chen AF, Jiang L. The peptide lycosin-I attenuates TNF-α-induced inflammation in human umbilical vein endothelial cells via IκB/NF-κB signaling pathway. Inflamm Res 2018. [DOI: 10.1007/s00011-018-1138-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
2
|
Yu Y, Yang D, Qiu L, Okamura H, Guo J, Haneji T. Tumor necrosis factor-α induces interleukin-34 expression through nuclear factor‑κB activation in MC3T3-E1 osteoblastic cells. Mol Med Rep 2014; 10:1371-6. [PMID: 24970360 PMCID: PMC4121411 DOI: 10.3892/mmr.2014.2353] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 04/24/2014] [Indexed: 01/27/2023] Open
Abstract
Osteoblasts produce various types of cytokines under pathological conditions and control osteoclast differentiation. Tumor necrosis factor-α (TNF-α) has been demonstrated to exert complex effects in osteoblasts under local inflammatory conditions, including in periodontal and periapical diseases. Interleukin-34 (IL-34) has been recently identified as a novel regulatory factor for the differentiation and function of osteoclasts. The present study provides the first evidence, to the best of our knowledge, that the expression of IL-34 is induced by TNF-α through nuclear factor-κB (NF-κB) activation in MC3T3-E1 osteoblastic cells. TNF-α induced IL-34 expression in a dose- and time-dependent manner. Immunocytochemistry with an NF-κB antibody demonstrated that NF-κB was mainly localized in the cytoplasm of the untreated MC3T3-E1 cells. Rapid translocation of NF-κB from the cytoplasm to the nucleus was observed in the cells treated with TNF-α for 15 min. Translocation and transcriptional activity of NF-κB were also determined by western blotting and a luciferase reporter assay, respectively. Pretreatment with 100 μM CAPE, an inhibitor of NF-κB, significantly inhibited TNF-α-induced IL-34 expression. These results indicate that TNF-α induces IL-34 expression via NF-κB in osteoblasts.
Collapse
Affiliation(s)
- Yaqiong Yu
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Di Yang
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Lihong Qiu
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Hirohiko Okamura
- Department of Histology and Oral Histology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Jiajie Guo
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Tatsuji Haneji
- Department of Histology and Oral Histology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto, Tokushima 770-8504, Japan
| |
Collapse
|
3
|
Parizek M, Douglas TEL, Novotna K, Kromka A, Brady MA, Renzing A, Voss E, Jarosova M, Palatinus L, Tesarek P, Ryparova P, Lisa V, dos Santos AM, Warnke PH, Bacakova L. Nanofibrous poly(lactide-co-glycolide) membranes loaded with diamond nanoparticles as promising substrates for bone tissue engineering. Int J Nanomedicine 2012; 7:1931-51. [PMID: 22619532 PMCID: PMC3356197 DOI: 10.2147/ijn.s26665] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Nanofibrous scaffolds loaded with bioactive nanoparticles are promising materials for bone tissue engineering. METHODS In this study, composite nanofibrous membranes containing a copolymer of L-lactide and glycolide (PLGA) and diamond nanoparticles were fabricated by an electrospinning technique. PLGA was dissolved in a mixture of methylene chloride and dimethyl formamide (2:3) at a concentration of 2.3 wt%, and nanodiamond (ND) powder was added at a concentration of 0.7 wt% (about 23 wt% in dry PLGA). RESULTS In the composite scaffolds, the ND particles were either arranged like beads in the central part of the fibers or formed clusters protruding from the fibers. In the PLGA-ND membranes, the fibers were thicker (diameter 270 ± 9 nm) than in pure PLGA meshes (diameter 218 ± 4 nm), but the areas of pores among these fibers were smaller than in pure PLGA samples (0.46 ± 0.02 μm(2) versus 1.28 ± 0.09 μm(2) in pure PLGA samples). The PLGA-ND membranes showed higher mechanical resistance, as demonstrated by rupture tests of load and deflection of rupture probe at failure. Both types of membranes enabled the attachment, spreading, and subsequent proliferation of human osteoblast-like MG-63 cells to a similar extent, although these values were usually lower than on polystyrene dishes. Nevertheless, the cells on both types of membranes were polygonal or spindle-like in shape, and were distributed homogeneously on the samples. From days 1-7 after seeding, their number rose continuously, and at the end of the experiment, these cells were able to create a confluent layer. At the same time, the cell viability, evaluated by a LIVE/DEAD viability/cytotoxicity kit, ranged from 92% to 97% on both types of membranes. In addition, on PLGA-ND membranes, the cells formed well developed talin-containing focal adhesion plaques. As estimated by the determination of tumor necrosis factor-alpha levels in the culture medium and concentration of intercellular adhesion molecule-1, MG-63 cells, and RAW 264.7 macrophages on these membranes did not show considerable inflammatory activity. CONCLUSION This study shows that nanofibrous PLGA membranes loaded with diamond nanoparticles have interesting potential for use in bone tissue engineering.
Collapse
Affiliation(s)
- Martin Parizek
- Department of Biomaterials and Tissue Engineering, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Mikami Y, Lee M, Irie S, Honda MJ. Dexamethasone modulates osteogenesis and adipogenesis with regulation of osterix expression in rat calvaria-derived cells. J Cell Physiol 2011; 226:739-48. [PMID: 20717928 DOI: 10.1002/jcp.22392] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Osteoblasts and adipocytes originate from common mesenchymal progenitor cells and although a number of compounds can induce osteoblastic and adipogenic differentiation from progenitor cells, the underlying mechanisms have not been elucidated. The present study examined the synergistic effects of dexamethasone (Dex) and bone morphogenetic protein (BMP)-2 on the differentiation of clonal mesenchymal progenitor cells isolated from rat calvaria into osteoblasts and adipocytes, as well as the effects of the timing of treatment. Cells were cultured for various periods of time in the presence of Dex and/or BMP-2. When cells were treated with Dex+BMP-2 during the early phase of differentiation, they differentiated into adipocytes. However, when cells were treated with Dex+BMP-2 during the late phase of differentiation, a synergistic effect on in vitro matrix mineralization was observed. To examine differences between the early and late phases of differentiation, ALP activity was measured in the presence of BMP-2. ALP activity increased markedly on Day 9, corresponding to the onset of the synergistic effect of Dex. Dex treatment inhibited osterix (OSX) expression in cells committed to adipogenic differentiation, but not in cells committed to osteogenic differentiation following BMP-2 treatment. The isoform2 OSX promoter region was found to be involved in the effects of Dex on cells during the early phase of differentiation. Furthermore, cells stably expressing OSX (isoform2) formed mineralized nodules even though they had been treated with Dex+BMP-2 during the early phase of differentiation. It appears that Dex modulates osteogenesis and adipogenesis in mesenchymal stem cells by regulating OSX expression.
Collapse
Affiliation(s)
- Yoshikazu Mikami
- Department of Anatomy, Nihon University School of Dentistry, Tokyo, Japan
| | | | | | | |
Collapse
|
5
|
Zhang F, Koyama Y, Sanuki R, Mitsui N, Suzuki N, Kimura A, Nakajima A, Shimizu N, Maeno M. IL-17A stimulates the expression of inflammatory cytokines via celecoxib-blocked prostaglandin in MC3T3-E1 cells. Arch Oral Biol 2010; 55:679-88. [PMID: 20630498 DOI: 10.1016/j.archoralbio.2010.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 05/28/2010] [Accepted: 06/13/2010] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The prostaglandins (PGs) released from osteoblasts can alter the process of bone remodelling. Recently, we showed that compressive force induced the expression of pro-inflammatory cytokine interleukin (IL)-17s and their receptors in osteoblastic MC3T3-E1 cells and that IL-17A was expressed most highly. Consequently, in the current study we examined the effect of IL-17A and/or celecoxib on PGE(2) production and the expression of cyclooxygenases (COXs) and inflammatory cytokines in MC3T3-E1 cells. We also examined the effects of PGE(2) and cyclohexamide on the expression of inflammatory cytokines. METHODS Cells were cultured with or without IL-17A (0.1, 1.0, or 10 ng/ml) in the presence or absence of 10 microM celecoxib, a specific inhibitor of COX-2, for up to 72 h. Cells were pretreated with or without 10 microg/ml cycloheximide, protein synthesis inhibitor, for 30 min, and then cultured with 10 ng/ml IL-17A for 24 h. Cells were also cultured with or without 1.5 ng/ml PGE(2) for 24 h. PGE(2) production was determined by ELISA. The expression of COX-1, COX-2, IL-1alpha, IL-6, IL-8, IL-11, and TNF-alpha mRNAs and proteins was determined by real-time PCR and ELISA, respectively. RESULTS The expression of COX-2, IL-1alpha, IL-6, IL-8, IL-11, and TNF-alpha, as well as PGE(2) production increased in the presence of IL-17A, whereas COX-1 expression did not change. Celecoxib blocked the stimulatory effect of IL-17A on the expression of COX-2, IL-1alpha, IL-6, IL-8, and IL-11 as well as PGE(2) production, whereas it did not block TNF-alpha expression. Cycloheximide pretreatment suppressed the expression of IL-17-induced inflammatory cytokines. The expression of IL-1alpha, IL-6, IL-8, and IL-11 increased by the addition of PGE(2), whereas TNF-alpha expression was not affected. CONCLUSION These results suggest that IL-17A stimulates the expression of bone resorption-related inflammatory cytokines through an autocrine mechanism involving celecoxib-blocked PGs, mainly PGE(2), in osteoblasts.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Orthodontics, Shandong University School of Dentistry, Jinan, Shandong Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Newton R, Leigh R, Giembycz MA. Pharmacological strategies for improving the efficacy and therapeutic ratio of glucocorticoids in inflammatory lung diseases. Pharmacol Ther 2009; 125:286-327. [PMID: 19932713 DOI: 10.1016/j.pharmthera.2009.11.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 11/02/2009] [Indexed: 10/20/2022]
Abstract
Glucocorticoids are widely used to treat various inflammatory lung diseases. Acting via the glucocorticoid receptor (GR), they exert clinical effects predominantly by modulating gene transcription. This may be to either induce (transactivate) or repress (transrepress) gene transcription. However, certain individuals, including those who smoke, have certain asthma phenotypes, chronic obstructive pulmonary disease (COPD) or some interstitial diseases may respond poorly to the beneficial effects of glucocorticoids. In these cases, high dose, often oral or parental, glucocorticoids are typically prescribed. This generally leads to adverse effects that compromise clinical utility. There is, therefore, a need to enhance the clinical efficacy of glucocorticoids while minimizing adverse effects. In this context, a long-acting beta(2)-adrenoceptor agonist (LABA) can enhance the clinical efficacy of an inhaled corticosteroid (ICS) in asthma and COPD. Furthermore, LABAs can augment glucocorticoid-dependent gene expression and this action may account for some of the benefits of LABA/ICS combination therapies when compared to ICS given as a monotherapy. In addition to metabolic genes and other adverse effects that are induced by glucocorticoids, there are many other glucocorticoid-inducible genes that have significant anti-inflammatory potential. We therefore advocate a move away from the search for ligands of GR that dissociate transactivation from transrepression. Instead, we submit that ligands should be functionally screened by virtue of their ability to induce or repress biologically-relevant genes in target tissues. In this review, we discuss pharmacological methods by which selective GR modulators and "add-on" therapies may be exploited to improve the clinical efficacy of glucocorticoids while reducing potential adverse effects.
Collapse
Affiliation(s)
- Robert Newton
- Department of Cell Biology and Anatomy, Airway Inflammation Group, Institute of Infection, Immunity and Inflammation, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | | | | |
Collapse
|
7
|
Newton R, Holden NS. Separating transrepression and transactivation: a distressing divorce for the glucocorticoid receptor? Mol Pharmacol 2007; 72:799-809. [PMID: 17622575 DOI: 10.1124/mol.107.038794] [Citation(s) in RCA: 226] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Glucocorticoids (corticosteroids) are highly effective in combating inflammation in the context of a variety of diseases. However, clinical utility can be compromised by the development of side effects, many of which are attributed to the ability of the glucocorticoid receptor (GR) to induce the transcription of, or transactivate, certain genes. By contrast, the anti-inflammatory effects of glucocorticoids are due largely to their ability to reduce the expression of pro-inflammatory genes. This effect has been predominantly attributed to the repression of key inflammatory transcription factors, including AP-1 and NF-kappaB, and is termed transrepression. The ability to functionally separate these transcriptional functions of GR has prompted a search for dissociated GR ligands that can differentially induce transrepression but not transactivation. In this review, we present evidence that post-transcriptional mechanisms of action are highly important to the anti-inflammatory actions of glucocorticoids. Furthermore, we present the case that mechanistically distinct forms of glucocorticoid-inducible gene expression are critical to the development of anti-inflammatory effects by repressing inflammatory signaling pathways and inflammatory gene expression at multiple levels. Considerable care is therefore required to avoid loss of anti-inflammatory effectiveness in the development of novel transactivation-defective ligands of GR.
Collapse
Affiliation(s)
- Robert Newton
- Department of Cell Biology and Anatomy, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada.
| | | |
Collapse
|
8
|
Clark AR. Anti-inflammatory functions of glucocorticoid-induced genes. Mol Cell Endocrinol 2007; 275:79-97. [PMID: 17561338 DOI: 10.1016/j.mce.2007.04.013] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 04/25/2007] [Indexed: 01/12/2023]
Abstract
There is a broad consensus that glucocorticoids (GCs) exert anti-inflammatory effects largely by inhibiting the function of nuclear factor kappaB (NFkappaB) and consequently the transcription of pro-inflammatory genes. In contrast, side effects are thought to be largely dependent on GC-induced gene expression. Biochemical and genetic evidence suggests that the positive and negative effects of GCs on transcription can be uncoupled from one another. Hence, novel GC-related drugs that mediate inhibition of NFkappaB but do not activate gene expression are predicted to retain therapeutic effects but cause fewer or less severe side effects. Here, we critically re-examine the evidence in favor of the consensus, binary model of GC action and discuss conflicting evidence, which suggests that anti-inflammatory actions of GCs depend on the induction of anti-inflammatory mediators. We propose an alternative model, in which GCs exert anti-inflammatory effects at both transcriptional and post-transcriptional levels, both by activating and inhibiting expression of target genes. The implications of such a model in the search for safer anti-inflammatory drugs are discussed.
Collapse
Affiliation(s)
- Andrew R Clark
- Kennedy Institute of Rheumatology Division, Imperial College London, 1 Aspenlea Road, Hammersmith, London W6 8LH, United Kingdom.
| |
Collapse
|
9
|
Vidaeff AC, Ramin SM, Gilstrap LC, Bishop KD, Alcorn JL. Impact of progesterone on cytokine-stimulated nuclear factor-kappaB signaling in HeLa cells. J Matern Fetal Neonatal Med 2007; 20:23-8. [PMID: 17437195 DOI: 10.1080/14767050601128019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE A key event in the pathways leading to preterm labor may be the activation of nuclear factor-kappaB (NF-kappaB) in the fetal membranes and the cervix. Anti-inflammatory agents, such as the corticosteroids, inhibit the activation of NF-kappaB. We proposed to investigate the effects of progesterone pretreatment on cytokine-stimulated activation of NF-kappaB in HeLa cells, a human cervical epithelial cell line. METHODS HeLa cells were pretreated with 10(-7) M progesterone for 24 hours and exposed to 1 ng/mL interleukin-1beta (IL-1beta) for 1 hour. Nuclear and cytosolic extracts were subjected to Western blot analysis using anti-p65 and anti-inhibitory protein-kappaBalpha (anti-IkappaBalpha) antibodies. Densitometric data (n=5) were compared using Kruskal-Wallis test. RESULTS Pretreatment with progesterone interfered with IL-1beta-induced IkappaBalpha degradation. However, progesterone pretreatment resulted in a significant decrease in NF-kappaB protein subunit p65 in the cytoplasm. Pretreatment with progesterone did not reduce the amount of nuclear p65 and did not interfere with nuclear translocation of p65. CONCLUSION Our observations suggest that any possible role played by progesterone in preterm labor prevention is not exerted through anti-inflammatory mechanisms of NF-kappaB down-regulation.
Collapse
Affiliation(s)
- Alex C Vidaeff
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Maternal-Fetal Medicine, University of Texas-Houston Medical School, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
10
|
Wada Y, Lu R, Zhou D, Chu J, Przewloka T, Zhang S, Li L, Wu Y, Qin J, Balasubramanyam V, Barsoum J, Ono M. Selective abrogation of Th1 response by STA-5326, a potent IL-12/IL-23 inhibitor. Blood 2006; 109:1156-64. [PMID: 17053051 DOI: 10.1182/blood-2006-04-019398] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The interleukin-12 (IL-12) cytokine induces the differentiation of naive T cells to the T helper cell type 1 (Th1) phenotype and is integral to the pathogenesis of Th1-mediated immunologic disorders. A more recently discovered IL-12 family member, IL-23, shares the p40 protein subunit with IL-12 and plays a critical role in the generation of effector memory T cells and IL-17-producing T cells. We introduce a novel compound, STA-5326, that down-regulates both IL-12 p35 and IL-12/IL-23 p40 at the transcriptional level, and inhibits the production of both IL-12 and IL-23 cytokines. Oral administration of STA-5326 led to a suppression of the Th1 but not Th2 immune response in mice. In vivo studies using a CD4+CD45Rbhigh T-cell transfer severe combined immunodeficiency (SCID) mouse inflammatory bowel disease model demonstrated that oral administration of STA-5326 markedly reduced inflammatory histopathologic changes in the colon. A striking decrease in interferon-gamma (IFN-gamma) production was observed in ex vivo culture of lamina propria cells harvested from animals treated with STA-5326, indicating a down-regulation of the Th1 response by STA-5326. These results suggest that STA-5326 has potential for use in the treatment of Th1-related autoimmune or immunologic disorders. STA-5326 currently is being evaluated in phase 2 clinical trials in patients with Crohn disease and rheumatoid arthritis.
Collapse
Affiliation(s)
- Yumiko Wada
- Synta Pharmaceuticals Corp, Lexington, MA 02421, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Samoto H, Shimizu E, Matsuda-Honjo Y, Saito R, Yamazaki M, Kasai K, Furuyama S, Sugiya H, Sodek J, Ogata Y. TNF-alpha suppresses bone sialoprotein (BSP) expression in ROS17/2.8 cells. J Cell Biochem 2004; 87:313-23. [PMID: 12397613 DOI: 10.1002/jcb.10301] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tumor necrosis factor-alpha (TNF-alpha) is a major mediator of inflammatory responses in many diseases that inhibits bone formation and stimulates bone resorption. To determine molecular mechanisms involved in the suppression of bone formation we have analyzed the effects of TNF-alpha on BSP gene expression. Bone sialoprotein (BSP) is a mineralized tissue-specific protein that appears to function in the initial mineralization of bone. Previous studies have demonstrated that BSP mRNA expression is essentially restricted to fully-differentiated cells of mineralized connective tissues and that the expression of BSP is developmentally regulated. Treatment of rat osteosarcoma ROS 17/2.8 cells with TNF-alpha (10 ng/ml) for 24 h caused a marked reduction in BSP mRNA levels. The addition of antioxidant N-acetylcysteine (NAC; 20 mM) 30 min prior to stimulation with TNF-alpha attenuated the inhibition of BSP mRNA levels. Transient transfection analyses, using chimeric constructs of the rat BSP gene promoter linked to a luciferase reporter gene, revealed that TNF-alpha (10 ng/ml) suppressed expression in all constructs, including a short construct (pLUC3; nts -116 to +60), transfected into ROS17/2.8 cells. Further deletion analysis of the BSP promoter showed that a region within nts -84 to -60 was targeted by TNF-alpha, the effects which were inhibited by NAC and the tyrosine kinase inhibitor, herbimycin A (HA). Introduction of 2bp mutations in the inverted CCAAT box (ATTGG; nts -50 and -46), a putative cAMP response element (CRE; nts -75 to -68), and a FGF response element (FRE; nts -92 to -85) showed that the TNF-alpha effects were mediated by the CRE. These results were supported by gel mobility shift assays, using a radiolabeled double-stranded CRE oligonucleotide, which revealed decreased binding of a nuclear protein from TNF-alpha-stimulated ROS 17/2.8 cells. Further, the inhibitory effect of TNF-alpha on CRE DNA-protein complex was completely abolished by NAC or HA treatment. These studies, therefore, show that TNF-alpha suppresses BSP gene transcription through a tyrosine kinase-dependent pathway that generates reactive oxygen species and that the TNF-alpha effects are mediated by a CRE element in the proximal BSP gene promoter.
Collapse
Affiliation(s)
- Hiroshi Samoto
- Department of Orthodontics, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kurokouchi K, Jacobs CR, Donahue HJ. Oscillating fluid flow inhibits TNF-alpha -induced NF-kappa B activation via an Ikappa B kinase pathway in osteoblast-like UMR106 cells. J Biol Chem 2001; 276:13499-504. [PMID: 11096064 DOI: 10.1074/jbc.m003795200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fluid flow plays an important role in load-induced bone remodeling. However, the molecular mechanism of flow-induced signal transduction in osteoblasts remains unclear. In endothelial cells, fluid flow alters activation of NF-kappaB resulting in changes in expression of cell adhesion molecules. To test the hypothesis that fluid flow alters NF-kappaB activation and expression of cell adhesion molecules in osteoblastic cells, we examined the effect of oscillating fluid flow (OFF) on tumor necrosis factor (TNF)-alpha-induced NF-kappaB activation in rat osteoblast-like UMR106 cells. We found that OFF inhibits NF-kappaB-DNA binding activities, especially TNF-alpha-induced p50-p65 heterodimer NF-kappaB activation and TNF-alpha-induced intercellular adhesion molecule-1 mRNA expression. The inhibitory effects of OFF on both TNF-alpha-induced NF-kappaB activation and intercellular adhesion molecule-1 mRNA expression were shear stress-dependent and also increased with OFF exposure duration, indicating that OFF has potent effects on mechanotransduction pathways. OFF also inhibited TNF-alpha-induced IkappaBalpha degradation and TNF-alpha-induced IkappaB kinase (IKK) activity in a shear stress-dependent manner. These results demonstrate that IKK is an initial target molecule for OFF effects on osteoblastic cells. Thus, OFF inhibits TNF-alpha-induced IKK activation, leading to a decrease in phosphorylation and degradation of inhibitory IkappaBalpha, which in turn results in the decrease of TNF-alpha-induced NF-kappaB activation and potentially the transcription of target genes.
Collapse
Affiliation(s)
- K Kurokouchi
- Department of Orthopaedics and Rehabilitation and Cellular and Molecular Physiology, Musculoskeletal Research Laboratory, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|