1
|
Bellavia D, Costa V, De Luca A, Maglio M, Pagani S, Fini M, Giavaresi G. Vitamin D Level Between Calcium-Phosphorus Homeostasis and Immune System: New Perspective in Osteoporosis. Curr Osteoporos Rep 2024; 22:599-610. [PMID: 27734322 DOI: 10.1007/s11914-016-0331-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vitamin D is a key molecule in calcium and phosphate homeostasis; however, increasing evidence has recently shown that it also plays a crucial role in the immune system, both innate and adaptive. A deregulation of vitamin D levels, due also to mutations and polymorphisms in the genes of the vitamin D pathway, determines severe alterations in the homeostasis of the organism, resulting in a higher risk of onset of some diseases, including osteoporosis. This review gives an overview of the influence of vitamin D levels on the pathogenesis of osteoporosis, between bone homeostasis and immune system.
Collapse
Affiliation(s)
- Daniele Bellavia
- Innovative Technology Platforms for Tissue Engineering, Theranostics and Oncology, Rizzoli Orthopaedic Institute, Via Divisi, 83, 90100, Palermo, Italy
| | - Viviana Costa
- Innovative Technology Platforms for Tissue Engineering, Theranostics and Oncology, Rizzoli Orthopaedic Institute, Via Divisi, 83, 90100, Palermo, Italy
| | - Angela De Luca
- Innovative Technology Platforms for Tissue Engineering, Theranostics and Oncology, Rizzoli Orthopaedic Institute, Via Divisi, 83, 90100, Palermo, Italy
| | - Melania Maglio
- Laboratory of Biocompatibility, Technological Innovations and Advanced Therapies, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Stefania Pagani
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Milena Fini
- Laboratory of Biocompatibility, Technological Innovations and Advanced Therapies, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Gianluca Giavaresi
- Innovative Technology Platforms for Tissue Engineering, Theranostics and Oncology, Rizzoli Orthopaedic Institute, Via Divisi, 83, 90100, Palermo, Italy.
| |
Collapse
|
2
|
Kotowska K, Wojciuk B, Sieńko J, Bogacz A, Stukan I, Drożdżal S, Czerny B, Tejchman K, Trybek G, Machaliński B, Kotowski M. The Role of Vitamin D Metabolism Genes and Their Genomic Background in Shaping Cyclosporine A Dosage Parameters after Kidney Transplantation. J Clin Med 2024; 13:4966. [PMID: 39201108 PMCID: PMC11355102 DOI: 10.3390/jcm13164966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/02/2024] Open
Abstract
Background: Kidney transplantation is followed by immunosuppressive therapy involving calcineurin inhibitors (CNIs) such as cyclosporin A. However, long-term high CNIs doses can lead to vitamin D deficiency, and genetic variations influencing vitamin D levels can indirectly impact the necessary CNIs dosage. This study investigates the impact of genetic variations of vitamin D binding protein (DBP) rs2282679 and CYP2R1 hydroxylase rs10741657 polymorphisms on the cyclosporin A dosage in kidney transplant recipients. Additional polymorphisims of genes that are predicted to influence the pharmacogenetic profile were included. Methods: Gene polymorphisms in 177 kidney transplant recipients were analyzed using data mining techniques, including the Random Forest algorithm and Classification and Regression Trees (C&RT). The relationship between the concentration/dose (C/D) ratio of cyclosporin A and genetic profiles was assessed to determine the predictive value of DBP rs2282679 and CYP2R1 rs10741657 polymorphisms. Results: Polymorphic variants of the DBP (rs2282679) demonstrated a strong predictive value for the cyclosporin A C/D ratio in post-kidney transplantation patients. By contrast, the CYP2R1 polymorphism (rs10741657) did not show predictive significance. Additionally, the immune response genes rs231775 CTLA4 and rs1800896 IL10 were identified as predictors of cyclosporin A response, though these did not result in statistically significant differences. Conclusions:DBP rs2282679 polymorphisms can significantly predict the cyclosporin A C/D ratio, potentially enhancing the accuracy of CNI dosing. This can help identify patient groups at risk of vitamin D deficiency, ultimately improving the management of kidney transplant recipients. Understanding these genetic influences allows for more personalized and effective treatment strategies, contributing to better long-term outcomes for patients.
Collapse
Affiliation(s)
- Katarzyna Kotowska
- Clinic of Maxillofacial Surgery, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Bartosz Wojciuk
- Department of Immunological Diagnostics, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Jerzy Sieńko
- Institute of Physical Culture Sciences, University of Szczecin, 70-453 Szczecin, Poland
| | - Anna Bogacz
- Department of Personalized Medicine and Cell Therapy, Regional Blood Center, 60-354 Poznan, Poland
| | - Iga Stukan
- Department of General Pathology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Sylwester Drożdżal
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Bogusław Czerny
- Department of General Pharmacology and Pharmacoeconomics, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland
| | - Karol Tejchman
- Department of General Surgery and Transplantation, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Grzegorz Trybek
- Department of Interdisciplinary Dentistry, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Maciej Kotowski
- Department of General Surgery and Transplantation, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| |
Collapse
|
3
|
Rozmus D, Płomiński J, Augustyn K, Cieślińska A. rs7041 and rs4588 Polymorphisms in Vitamin D Binding Protein Gene (VDBP) and the Risk of Diseases. Int J Mol Sci 2022; 23:ijms23020933. [PMID: 35055118 PMCID: PMC8779119 DOI: 10.3390/ijms23020933] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 02/01/2023] Open
Abstract
The purpose of the study was to investigate the role of vitamin D binding protein (VDBP, DBP) and its polymorphism in the vitamin D pathway and human health. This narrative review shows the latest literature on the most popular diseases that have previously been linked to VDBP. Vitamin D plays a crucial role in human metabolism, controlling phosphorus and calcium homeostasis. Vitamin D binding protein bonds vitamin D and its metabolites and transports them to target tissues. The most common polymorphisms in the VDBP gene are rs4588 and rs7041, which are located in exon 11 in domain III of the VDBP gene. rs4588 and rs7041 may be correlated with differences not only in vitamin D status in serum but also with vitamin D metabolites. This review supports the role of single nucleotide polymorphisms (SNPs) in the VDBP gene and presents the latest data showing correlations between VDBP variants with important human diseases such as obesity, diabetes mellitus, tuberculosis, chronic obstructive pulmonary disease, and others. In this review, we aim to systematize the knowledge regarding the occurrence of diseases and their relationship with vitamin D deficiencies, which may be caused by polymorphisms in the VDBP gene. Further research is required on the possible influence of SNPs, modifications in the structure of the binding protein, and their influence on the organism. It is also important to mention that most studies do not have a specific time of year to measure accurate vitamin D metabolite levels, which can be misleading in conclusions due to the seasonal nature of vitamin D.
Collapse
Affiliation(s)
- Dominika Rozmus
- Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland;
- Correspondence:
| | - Janusz Płomiński
- Clinical Department of Trauma-Orthopedic Surgery and Spine Surgery of the Provincial Specialist Hospital in Olsztyn, 10-561 Olsztyn, Poland;
- Department and Clinic of Orthopaedics and Traumatology, Collegium Medicum, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Klaudia Augustyn
- Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland;
| | - Anna Cieślińska
- Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland;
| |
Collapse
|
4
|
Rivera-Paredez B, Hidalgo-Bravo A, León-Reyes G, Antuna-Puente B, Flores YN, Salmerón J, Velázquez-Cruz R. Association of GC Variants with Bone Mineral Density and Serum VDBP Concentrations in Mexican Population. Genes (Basel) 2021; 12:genes12081176. [PMID: 34440350 PMCID: PMC8391993 DOI: 10.3390/genes12081176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 01/08/2023] Open
Abstract
Vitamin D-binding protein (VDBP) is encoded by the GC gene and is an active participant in the control of bone metabolism. However, the effect of its major variants on VDBP concentration and bone mineral density (BMD) remains unclear. Our aim was to analyze the effect of major GC variants on serum VDBP concentration and BMD. We recruited individuals from the Health Workers Cohort Study, which includes employees of the Mexican Institute of Social Security (IMSS). A total of 1853 adults were included. The single nucleotide polymorphisms (SNPs) rs7041 and rs4588 were genotyped to identify the three best characterized haplotypes of GC. Serum VBDP, 25(OH)D and BMD were also measured. Among women, the G allele of rs7041 was associated with higher VDBP and BMD compared to homozygous TT. The A allele of rs4588 was associated with lower VDBP and BMD compared to CC homozygous. In men, GC variants were only associated with VDBP levels. We did not observe an association between free/bioavailable 25(OH)D and BMD in men and women. Our results support an association of VDBP in bone health. The G and C alleles, from rs7041 and rs4588, respectively, are associated with high concentrations of VDBP and BMD in this sample of Mexican postmenopausal women.
Collapse
Affiliation(s)
- Berenice Rivera-Paredez
- Research Center in Policies, Population and Health, School of Medicine, National Autonomous University of Mexico (UNAM), Mexico 04510, Mexico; (B.R.-P.); (J.S.)
| | - Alberto Hidalgo-Bravo
- Department of Genetics, National Institute of Rehabilitation (INR), Mexico 014389, Mexico;
| | - Guadalupe León-Reyes
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico 14610, Mexico;
| | - Bárbara Antuna-Puente
- Laboratory of Genomics of Cardiovascular Diseases, National Institute of Genomic Medicine (INMEGEN), Mexico 14610, Mexico;
| | - Yvonne N. Flores
- Epidemiological and Health Services Research Unit, Morelos Delegation, Mexican Institute of Social Security, Cuernavaca, Morelos 62000, Mexico;
- University of California, Los Angeles (UCLA), Department of Health Policy and Management and UCLA-Kaiser Permanente Center for Health Equity, Fielding School of Public Health, Los Angeles, CA 90095, USA
- UCLA Center for Cancer Prevention and Control Research, Fielding School of Public Health and Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - Jorge Salmerón
- Research Center in Policies, Population and Health, School of Medicine, National Autonomous University of Mexico (UNAM), Mexico 04510, Mexico; (B.R.-P.); (J.S.)
| | - Rafael Velázquez-Cruz
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico 14610, Mexico;
- Correspondence: ; Tel.: +52-(55)-5350-1900; Fax: +52-(55)-5350-1999
| |
Collapse
|
5
|
Rozmus D, Ciesielska A, Płomiński J, Grzybowski R, Fiedorowicz E, Kordulewska N, Savelkoul H, Kostyra E, Cieślińska A. Vitamin D Binding Protein (VDBP) and Its Gene Polymorphisms-The Risk of Malignant Tumors and Other Diseases. Int J Mol Sci 2020; 21:E7822. [PMID: 33105665 PMCID: PMC7659952 DOI: 10.3390/ijms21217822] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Vitamin D is an important component of the endocrine system that controls calcium homeostasis and bone mineralization. Because of the very short half-life of free serum vitamin D it is stabilized and transported to target tissues by being bound to the vitamin D binding protein (VDBP). The most common polymorphisms: rs4588 and rs7041 in the vitamin D binding protein gene may correlate with differences in vitamin D status in the serum. This review presents data that relate to the presence of genetic variants in the VDBP gene in correlation with certain diseases, mostly concerning cancers (breast, prostate, pancreatic, lung, colorectal, basal cell carcinoma cancer and cutaneous melanoma) or other related diseases (thyroid autoimmunity disorders, obesity, diabetes mellitus, bone metabolism, rheumatoid arthritis, ankylosing spondylitis, asthma, chronic obstructive pulmonary disease, tuberculosis and coronary artery diseases).
Collapse
Affiliation(s)
- Dominika Rozmus
- Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (D.R.); (A.C.); (E.F.); (N.K.); (E.K.)
| | - Alicja Ciesielska
- Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (D.R.); (A.C.); (E.F.); (N.K.); (E.K.)
| | - Janusz Płomiński
- Clinical Department of Trauma-Orthopedic Surgery and Spine Surgery of the Provincial Specialist Hospital in Olsztyn, 10-561 Olsztyn, Poland; (J.P.); (R.G.)
- Department and Clinic of Orthopaedics and Traumatology, Collegium Medicum, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Roman Grzybowski
- Clinical Department of Trauma-Orthopedic Surgery and Spine Surgery of the Provincial Specialist Hospital in Olsztyn, 10-561 Olsztyn, Poland; (J.P.); (R.G.)
- Department and Clinic of Orthopaedics and Traumatology, Collegium Medicum, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Ewa Fiedorowicz
- Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (D.R.); (A.C.); (E.F.); (N.K.); (E.K.)
| | - Natalia Kordulewska
- Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (D.R.); (A.C.); (E.F.); (N.K.); (E.K.)
| | - Huub Savelkoul
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University and Research, 6700 AG Wageningen, The Netherlands;
| | - Elżbieta Kostyra
- Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (D.R.); (A.C.); (E.F.); (N.K.); (E.K.)
| | - Anna Cieślińska
- Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (D.R.); (A.C.); (E.F.); (N.K.); (E.K.)
| |
Collapse
|
6
|
Bikle D, Christakos S. New aspects of vitamin D metabolism and action - addressing the skin as source and target. Nat Rev Endocrinol 2020; 16:234-252. [PMID: 32029884 DOI: 10.1038/s41574-019-0312-5] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2019] [Indexed: 12/19/2022]
Abstract
Vitamin D has a key role in stimulating calcium absorption from the gut and promoting skeletal health, as well as many other important physiological functions. Vitamin D is produced in the skin. It is subsequently metabolized to its hormonally active form, 1,25-dihydroxyvitamin D (1,25(OH)2D), by the 1-hydroxylase and catabolized by the 24-hydroxylase. In this Review, we pay special attention to the effect of mutations in these enzymes and their clinical manifestations. We then discuss the role of vitamin D binding protein in transporting vitamin D and its metabolites from their source to their targets, the free hormone hypothesis for cell entry and HSP70 for intracellular transport. This is followed by discussion of the vitamin D receptor (VDR) that mediates the cellular actions of 1,25(OH)2D. Cell-specific recruitment of co-regulatory complexes by liganded VDR leads to changes in gene expression that result in distinct physiological actions by 1,25(OH)2D, which are disrupted by mutations in the VDR. We then discuss the epidermis and hair follicle, to provide a non-skeletal example of a tissue that expresses VDR that not only makes vitamin D but also can metabolize it to its hormonally active form. This enables vitamin D to regulate epidermal differentiation and hair follicle cycling and, in so doing, to promote barrier function, wound healing and hair growth, while limiting cancer development.
Collapse
Affiliation(s)
- Daniel Bikle
- Departments of Medicine and Dermatology, University of California San Francisco, San Francisco, CA, USA.
- VA Medical Center, San Francisco, CA, USA.
| | - Sylvia Christakos
- Departments of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
7
|
Bikle DD, Schwartz J. Vitamin D Binding Protein, Total and Free Vitamin D Levels in Different Physiological and Pathophysiological Conditions. Front Endocrinol (Lausanne) 2019; 10:317. [PMID: 31191450 PMCID: PMC6546814 DOI: 10.3389/fendo.2019.00317] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/01/2019] [Indexed: 12/19/2022] Open
Abstract
This review focuses on the biologic importance of the vitamin D binding protein (DBP) with emphasis on its regulation of total and free vitamin D metabolite levels in various clinical conditions. Nearly all DBP is produced in the liver, where its regulation is influenced by estrogen, glucocorticoids and inflammatory cytokines but not by vitamin D itself. DBP is the most polymorphic protein known, and different DBP alleles can have substantial impact on its biologic functions. The three most common alleles-Gc1f, Gc1s, Gc2-differ in their affinity with the vitamin D metabolites and have been variably associated with a number of clinical conditions. Although DBP has a number of biologic functions independent of vitamin D, its major biologic function is that of regulating circulating free and total levels of vitamin D metabolites. 25 hydroxyvitamin D (25(OH)D) is the best studied form of vitamin D as it provides the best measure of vitamin D status. In a normal non-pregnant individual, approximately 0.03% of 25(OH)D is free; 85% is bound to DBP, 15% is bound to albumin. The free hormone hypothesis postulates that only free 25(OH)D can enter cells. This hypothesis is supported by the observation that mice lacking DBP, and therefore with essentially undetectable 25(OH)D levels, do not show signs of vitamin D deficiency unless put on a vitamin D deficient diet. Similar observations have recently been described in a family with a DBP mutation. This hypothesis also applies to other protein bound lipophilic hormones including glucocorticoids, sex steroids, and thyroid hormone. However, tissues expressing the megalin/cubilin complex, such as the kidney, have the capability of taking up 25(OH)D still bound to DBP, but most tissues rely on the free level. Attempts to calculate the free level using affinity constants generated in a normal individual along with measurement of DBP and total 25(OH)D have not accurately reflected directly measured free levels in a number of clinical conditions. In this review, we examine the impact of different clinical conditions as well as different DBP alleles on the relationship between total and free 25(OH)D, using only data in which the free 25(OH)D level was directly measured. The major conclusion is that a number of clinical conditions alter this relationship, raising the question whether measuring just total 25(OH)D might be misleading regarding the assessment of vitamin D status, and such assessment might be improved by measuring free 25(OH)D instead of or in addition to total 25(OH)D.
Collapse
Affiliation(s)
- Daniel David Bikle
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Endocrine Research Unit, San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
| | - Janice Schwartz
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
8
|
Bouillon R, Schuit F, Antonio L, Rastinejad F. Vitamin D Binding Protein: A Historic Overview. Front Endocrinol (Lausanne) 2019; 10:910. [PMID: 31998239 PMCID: PMC6965021 DOI: 10.3389/fendo.2019.00910] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
Vitamin D and all its metabolites are bound to a specific vitamin D binding protein, DBP. This protein was originally first discovered by its worldwide polymorphism and called Group-specific Component (GC). We now know that DBP and GC are the same protein and appeared early in the evolution of vertebrates. DBP is genetically the oldest member of the albuminoid family (including albumin, α-fetoprotein and afamin, all involved in transport of fatty acids or hormones). DBP has a single binding site for all vitamin D metabolites and has a high affinity for 25OHD and 1,25(OH)2D, thereby creating a large pool of circulating 25OHD, which prevents rapid vitamin D deficiency. DBP of higher vertebrates (not amphibians or reptiles) binds with very high affinity actin, thereby preventing the formation of polymeric actin fibrils in the circulation after tissue damage. Megalin is a cargo receptor and is together with cubilin needed to reabsorb DBP or the DBP-25OHD complex, thereby preventing the urinary loss of these proteins and 25OHD. The total concentrations of 25OHD and 1,25(OH)2D in DBP null mice or humans are extremely low but calcium and bone homeostasis remain normal. This is the strongest argument for claiming that the "free hormone hypothesis" also applies to the vitamin D hormone, 1,25(OH)2D. DBP also transports fatty acids, and can play a role in the immune system. DBP is genetically very polymorphic with three frequent alleles (DBP/GC 1f, 1s, and 2) but in total more than 120 different variants but its health consequences, if any, are not understood. A standardization of DBP assays is essential to further explore the role of DBP in physiology and diseases.
Collapse
Affiliation(s)
- Roger Bouillon
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
- *Correspondence: Roger Bouillon
| | - Frans Schuit
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Leen Antonio
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Fraydoon Rastinejad
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Song W, Wang X, Tian Y, Zhang X, Lu R, Meng H. GC Gene Polymorphisms and Vitamin D-Binding Protein Levels Are Related to the Risk of Generalized Aggressive Periodontitis. Int J Endocrinol 2016; 2016:5141089. [PMID: 28018430 PMCID: PMC5149651 DOI: 10.1155/2016/5141089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/04/2016] [Accepted: 10/11/2016] [Indexed: 12/16/2022] Open
Abstract
Objective. To explore whether GC (group-specific component) rs17467825, rs4588, and rs7041 polymorphisms are associated with generalized aggressive periodontitis. Methods. This case-control study recruited 372 patients with generalized aggressive periodontitis (group AgP) and 133 periodontal healthy subjects (group HP). GC rs17467825, rs4588, and rs7041 genotypes and plasmatic vitamin D-binding protein (DBP) were measured. Analysis of single SNP and multiple SNPs was performed and relevance between plasmatic DBP and haplotypes was analyzed. Results. GC rs17467825 GG genotype was statistically associated with lower risk for generalized aggressive periodontitis under the recessive model (OR = 0.52, 95% CI: 0.30-0.92, p = 0.028). GC rs17467825 and rs4588 had strong linkage disequilibrium with r2 ≥ 0.8 and D' ≥ 0.8. Haplotype (GC rs17467825, rs4588) GC was associated with the less risk for generalized aggressive periodontitis (OR = 0.29, 95% CI: 0.09-0.96, p = 0.043). In group AgP, individuals with combined genotype (GC rs17467825, rs4588) AG+CA had significantly lower plasmatic DBP level than those with the other two combined genotypes (AG+CA versus AA+CC p = 0.007; AG+CA versus GG+AA p = 0.026). Conclusions. GC rs17467825 genotype GG and haplotype (GC rs17467825, rs4588) GC are associated with generalized aggressive periodontitis. The association may be acquired through regulating DBP levels. The functions of GC gene and DBP in inflammatory disease need to be further studied.
Collapse
Affiliation(s)
- Wenli Song
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xian'e Wang
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yu Tian
- Department of General Dentistry, First Dental Center, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xin Zhang
- Department of Stomatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Ruifang Lu
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Huanxin Meng
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
- *Huanxin Meng:
| |
Collapse
|
10
|
Denburg MR, Bhan I. Vitamin D-Binding Protein in Health and Chronic Kidney Disease. Semin Dial 2015; 28:636-44. [PMID: 26332676 DOI: 10.1111/sdi.12422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Vitamin D-binding protein (DBP) is a multifunctional protein that has attracted increasing interest in recent years, largely because of its potential role in modulating the activity of vitamin D. Nearly all circulating vitamin D (~85-90%) circulates bound to DBP, with a smaller proportion bound to albumin, leaving <5% circulating freely. DBP may also play roles beyond vitamin D binding, with potential roles in the immune system and elsewhere. Numerous polymorphisms of DBP exist around the world, and recent studies have identified relevance of different DBP phenotypes in determining DBP concentration and vitamin D affinity. This review focuses on the known roles of DBP in health and kidney disease, and current views on the relevance of DBP polymorphisms.
Collapse
Affiliation(s)
- Michelle R Denburg
- Departments of Pediatrics and Epidemiology, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ishir Bhan
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
11
|
Associations between vitamin D-binding protein (DBP) gene polymorphism (TAAA)n and development of osteoporosis in the Volga-Ural region of Russia. Bull Exp Biol Med 2014; 157:253-7. [PMID: 24958377 DOI: 10.1007/s10517-014-2538-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Indexed: 10/25/2022]
Abstract
Study of DBP gene (TAAA) n polymorphism in women of postmenopausal age revealed a significantly lower incidence of DBP(*) 10 allele and a higher incidence of DBP(*) 11 allele in Russian women with bone fractures in comparison with the relevant controls (χ(2) = 4.47, p = 0.034 and χ(2) = 4.28, p = 0.038, respectively). Allele DBP(*) 11 is a high risk marker (OR = 1.93; 95%CI 1.06-3.48), while allele DBP(*)10 a marker of low risk of bone fractures (OR = 0.59; 95%CI 0.37-0.94). A trend to a reduction of mineral density of the femoral neck and of the lumbar vertebrae in women with DBP(*) 10(*) 8 genotype of DBP gene polymorphic locus (TAAA) n in comparison with DBP(*) 10(*) 10 and DBP(*) 10(*) 11 genotype carriers is traced.
Collapse
|
12
|
Pekkinen M, Saarnio E, Viljakainen HT, Kokkonen E, Jakobsen J, Cashman K, Mäkitie O, Lamberg-Allardt C. Vitamin D binding protein genotype is associated with serum 25-hydroxyvitamin D and PTH concentrations, as well as bone health in children and adolescents in Finland. PLoS One 2014; 9:e87292. [PMID: 24498064 PMCID: PMC3907502 DOI: 10.1371/journal.pone.0087292] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 12/26/2013] [Indexed: 01/08/2023] Open
Abstract
Vitamin D binding protein (DBP)/group-specific component (Gc), correlates positively with serum vitamin D metabolites, and phenotype influences serum 25-hydroxyvitamin D (S-25(OH)D) concentration. The protein isoform has been associated with decreased bone mineral density (BMD) and increased fracture risk. We examined the role of GC genotypes in S-25(OH)D status and BMD in 231 Finnish children and adolescents aged 7-19 yr. BMD was measured with DXA from lumbar spine (LS), total hip, and whole body, and for 175 subjects, radial volumetric BMD was measured with pQCT. Background characteristic and total dietary intakes of vitamin D and calcium were collected. The concentrations of 25(OH)D, parathyroid hormone (PTH), calcium and other markers of calcium homeostasis were determined from blood and urine. Genotyping was based on single-nucleotide polymorphism (rs4588) in the GC gene. The genotype distribution was: GC 1/1 68%, GC 1/2 26% and GC 2/2 6%. A significant difference emerged in 25(OH)D and PTH concentrations between the genotypes, (p = 0.001 and 0.028 respectively, ANCOVA). There was also a linear trend in: Gc 2/2 had the lowest 25(OH)D and PTH concentrations (p = 0.025 and 0.012, respectively). Total hip bone mineral content was associated with GC genotype (BMC) (p = 0.05, ANCOVA) in boys. In regression analysis, after adjusting for relevant covariates, GC genotype was associated with LS BMC and strength and strain index (SSI) Z-score in both genders, and LS BMD in boys. In conclusion, the present study demonstrates the association between GC genotypes and S-25(OH)D and PTH concentrations. The results show the influence of DBP genetic variation on bone mass accrual in adolescence.
Collapse
Affiliation(s)
- Minna Pekkinen
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- * E-mail:
| | - Elisa Saarnio
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Heli T. Viljakainen
- Children’s Hospital, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Elina Kokkonen
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jette Jakobsen
- Division of Nutrition, National Food Institute, Technical University of Denmark, Soborg, Denmark
| | - Kevin Cashman
- Department of Food and Nutritional Sciences, University College, Cork, Ireland
| | - Outi Mäkitie
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Children’s Hospital, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
13
|
Speeckaert MM, Speeckaert R, van Geel N, Delanghe JR. Vitamin D binding protein: a multifunctional protein of clinical importance. Adv Clin Chem 2014; 63:1-57. [PMID: 24783350 DOI: 10.1016/b978-0-12-800094-6.00001-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since the discovery of group-specific component and its polymorphism by Hirschfeld in 1959, research has put spotlight on this multifunctional transport protein (vitamin D binding protein, DBP). Besides the transport of vitamin D metabolites, DBP is a plasma glycoprotein with many important functions, including sequestration of actin, modulation of immune and inflammatory responses, binding of fatty acids, and control of bone development. A considerable DBP polymorphism has been described with a specific allele distribution in different geographic area. Multiple studies have shed light on the interesting relationship between polymorphisms of the DBP gene and the susceptibility to diseases. In this review, we give an overview of the multifunctional character of DBP and describe the clinical importance of DBP and its polymorphisms. Finally, we discuss the possibilities to use DBP as a novel therapeutic agent.
Collapse
|
14
|
Abstract
Vitamin D binding protein (DBP) is the major carrier protein of 25-hydroxyvitamin D (25(OH) D) in the circulation, where it may serve roles in maintaining stable levels during times of decreased 25(OH) availability and in regulating delivery of 25(OH) D to target tissues. Several genetic polymorphisms of DBP have been described that lead to phenotypic changes in the protein that may affect affinity, activity, and concentration. These polymorphisms have been linked with alterations in bone density in several populations. One of the mechanisms by which DBP may alter bone health involves regulating vitamin D bioavailability. DBP-bound vitamin is thought to be relatively unavailable to target tissues, and thus alterations in DBP levels or affinity could lead to changes in vitamin D bioactivity. As a result, functional vitamin D status may differ greatly between individuals with similar total 25(OH) D levels. Additionally, DBP may have independent roles on macrophage and osteoclast activation. This review will summarize recent findings about DBP with respect to measures of bone density and health.
Collapse
Affiliation(s)
- Ishir Bhan
- Massachusetts General Hospital, Harvard Medical School, 5 Suite 750, 50 Staniford Street, Boston, MA 02114, USA
- *Ishir Bhan:
| |
Collapse
|
15
|
Liong S, Di Quinzio MKW, Fleming G, Permezel M, Georgiou HM. Is vitamin D binding protein a novel predictor of labour? PLoS One 2013; 8:e76490. [PMID: 24124566 PMCID: PMC3790717 DOI: 10.1371/journal.pone.0076490] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 08/27/2013] [Indexed: 01/13/2023] Open
Abstract
Vitamin D binding protein (VDBP) has previously been identified in the amniotic fluid and cervicovaginal fluid (CVF) of pregnant women. The biological functions of VDBP include acting as a carrier protein for vitamin D metabolites, the clearance of actin that is released during tissue injury and the augmentation of the pro-inflammatory response. This longitudinal observational study was conducted on 221 healthy pregnant women who spontaneously laboured and delivered either at term or preterm. Serial CVF samples were collected and VDBP was measured by ELISA. Binary logistic regression analysis was performed to assess the utility of VDBP as a predictor of labour. VDBP in the CVF did not change between 20 and 35 weeks' gestation. VDBP measured in-labour was significantly increased 4.2 to 7.4-fold compared to 4-7, 8-14 and 15-28 days before labour (P<0.05). VDBP concentration was 4.3-fold significantly higher at 0-3 days compared to 15-28 days pre-labour (P<0.05). The efficacy of VDBP to predict spontaneous labour onset within 3 days provided a positive and negative predictive value of 82.8% and 95.3% respectively (area under receiver operator characteristic curve = 0.974). This longitudinal study of pregnant women suggests that VDBP in the CVF may be a useful predictor of labour.
Collapse
Affiliation(s)
- Stella Liong
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Australia
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Australia
| | - Megan K. W. Di Quinzio
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Australia
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Australia
| | - Gabrielle Fleming
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Australia
| | - Michael Permezel
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Australia
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Australia
| | - Harry M. Georgiou
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Australia
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Australia
- * E-mail:
| |
Collapse
|
16
|
Luong KVQ, Nguyen LTH. Beneficial role of vitamin D3 in the prevention of certain respiratory diseases. Ther Adv Respir Dis 2013; 7:327-50. [PMID: 24056290 DOI: 10.1177/1753465813503029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
There is evidence of aberrations in the vitamin D-endocrine system in subjects with respiratory diseases. Vitamin D deficiency is highly prevalent in patients with respiratory diseases, and patients who receive vitamin D have significantly larger improvements in inspiratory muscle strength and maximal oxygen uptake. Studies have provided an opportunity to determine which proteins link vitamin D to respiratory pathology, including the major histocompatibility complex class II molecules, vitamin D receptor, vitamin D-binding protein, chromosome P450, Toll-like receptors, poly(ADP-ribose) polymerase-1, and the reduced form of nicotinamide adenine dinucleotide phosphate. Vitamin D also exerts its effect on respiratory diseases through cell signaling mechanisms, including matrix metalloproteinases, mitogen-activated protein kinase pathways, the Wnt/β-catenin signaling pathway, prostaglandins, reactive oxygen species, and nitric oxide synthase. In conclusion, vitamin D plays a significant role in respiratory diseases. The best form of vitamin D for use in the treatment of respiratory diseases is calcitriol because it is the active metabolite of vitamin D3 and modulates inflammatory cytokine expression. Further investigation of calcitriol in respiratory diseases is needed.
Collapse
Affiliation(s)
- Khanh Vinh Quoc Luong
- Vietnamese American Medical Research Foundation, 14971 Brookhurst Street, Westminster, CA 92683, USA
| | | |
Collapse
|
17
|
Long KVQ, Nguyễn LTH. Roles of vitamin D in amyotrophic lateral sclerosis: possible genetic and cellular signaling mechanisms. Mol Brain 2013; 6:16. [PMID: 23570271 PMCID: PMC3641959 DOI: 10.1186/1756-6606-6-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 03/25/2013] [Indexed: 12/12/2022] Open
Abstract
Evidence suggests that there are aberrations in the vitamin D-endocrine system in subjects with amyotrophic lateral sclerosis (ALS). Here, we review the relationship between vitamin D and ALS. Vitamin D deficiency was reported in patients with ALS. Dietary vitamin D3 supplementation improves functional capacity in the G93A transgenic mouse model of ALS. Genetic studies have provided an opportunity to identify the proteins that link vitamin D to ALS pathology, including major histocompatibility complex (MHC) class II molecules, toll-like receptors, poly(ADP-ribose) polymerase-1, heme oxygenase-1, and calcium-binding proteins, as well as the reduced form of nicotinamide adenine dinucleotide phosphate. Vitamin D also exerts its effect on ALS through cell-signaling mechanisms, including glutamate, matrix metalloproteinases, mitogen-activated protein kinase pathways, the Wnt/β-catenin signaling pathway, prostaglandins, reactive oxygen species, and nitric oxide synthase. In conclusion, vitamin D may have a role in ALS. Further investigation of vitamin D in ALS patients is needed.
Collapse
|
18
|
Malik S, Fu L, Juras DJ, Karmali M, Wong BYL, Gozdzik A, Cole DEC. Common variants of the vitamin D binding protein gene and adverse health outcomes. Crit Rev Clin Lab Sci 2013; 50:1-22. [PMID: 23427793 PMCID: PMC3613945 DOI: 10.3109/10408363.2012.750262] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 10/23/2012] [Accepted: 11/13/2012] [Indexed: 12/12/2022]
Abstract
The vitamin D binding protein (DBP) is the major plasma carrier for vitamin D and its metabolites, but it is also an actin scavenger, and is the precursor to the immunomodulatory protein, Gc-MAF. Two missense variants of the DBP gene - rs7041 encoding Asp432Glu and rs4588 encoding Thr436Lys - change the amino acid sequence and alter the protein function. They are common enough to generate population-wide constitutive differences in vitamin D status, based on assay of the serum metabolite, 25-hydroxyvitamin D (25OHD). Whether these variants also influence the role of vitamin D in an immunologic milieu is not known. However, the issue is relevant, given the immunomodulatory effects of DBP and the role of protracted innate immune-related inflammation in response to tissue injury or repeated infection. Indeed, DBP and vitamin D may jointly or independently contribute to a variety of adverse health outcomes unrelated to classical notions of their function in bone and mineral metabolism. This review summarizes the reports to date of associations between DBP variants, and various chronic and infectious diseases. The available information leads us to conclude that DBP variants are a significant and common genetic factor in some common disorders, and therefore, are worthy of closer attention. In view of the heightened interest in vitamin D as a public health target, well-designed studies that look simultaneously at vitamin D and its carrier in relation to genotypes and adverse health outcome should be encouraged.
Collapse
Affiliation(s)
- Suneil Malik
- Office of Biotechnology, Genomics and Population Health, Public Health Agency of Canada, Toronto, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
19
|
Chupeerach C, Tungtrongchitr A, Phonrat B, Schweigert FJ, Tungtrongchitr R, Preutthipan S. Association of Thr420Lys polymorphism in DBP gene with fat-soluble vitamins and low radial bone mineral density in postmenopausal Thai women. Biomark Med 2012; 6:103-8. [PMID: 22296203 DOI: 10.2217/bmm.11.88] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
AIMS To investigate the genetic markers for osteoporosis bone mineral density by the genotyping of rs7041, rs4588 and rs1352845 in the DBP gene with either bone mineral density or serum 25-hydroxycholecalciferol, retinol and α-tocopherol, among 365 postmenopausal Thai women. MATERIALS & METHODS The DBP genotypes were analyzed by a PCR restriction fragment-length polymorphism method. Serum 25-hydroxycholecalciferol was assessed using a commercial chemiluminescent immunoassay. Serum retinol and α-tocopherol were measured by reverse-phase high-performance liquid chromatography. RESULTS After adjustment for age >50 years, elder Thai subjects with low BMI (≤25 kg/m(2)) and carrying the rs4588 CC genotype had a higher risk of radial bone mineral density osteoporosis (odds ratio: 6.29; p = 0.048). The rs1352845 genotype also had a statistical association with total hip bone mineral density; however, it disappeared after adjustment for age and BMI. No association was found in fat-soluble vitamins with bone mineral density. CONCLUSION DBP genotypes may influence the osteoporosis bone mineral density in postmenopausal Thai women.
Collapse
Affiliation(s)
- Chaowanee Chupeerach
- Department of Tropical Nutrition & Food Science, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand
| | | | | | | | | | | |
Collapse
|
20
|
Chun RF. New perspectives on the vitamin D binding protein. Cell Biochem Funct 2012; 30:445-56. [DOI: 10.1002/cbf.2835] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 03/09/2012] [Accepted: 03/28/2012] [Indexed: 12/23/2022]
Affiliation(s)
- Rene F. Chun
- UCLA/Orthopaedic Hospital; Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, David Geffen School of Medicine at UCLA; Los Angeles; California; USA
| |
Collapse
|
21
|
Lee SH, Kim KH, Kim JM, Yoon SH, Kim TH, Park SW, Park JS, Uh ST, Lee HS, Kim YH. Relationship between group-specific component protein and the development of asthma. Am J Respir Crit Care Med 2011; 184:528-36. [PMID: 21169467 DOI: 10.1164/rccm.201006-0951oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Airway inflammation and remodeling during asthma are attributed to the altered expression of biologically relevant proteins. OBJECTIVES To search for asthma-specific proteins in bronchoalveolar lavage fluid (BAL) from individuals with asthma and to validate the identified proteins in an experimental model of asthma. METHODS Liquid chromatography-tandem mass spectrometry was performed to identify proteins in BAL fluid found by two dimensional electrophoresis (2DE) to be differentially expressed in subjects with asthma versus control subjects. Group-specific component (Gc) and mRNA levels were measured using an ELISA, Western blots, and PCR. A neutralization study using an antibody against Gc protein was performed in an experimental asthma model. MEASUREMENTS AND MAIN RESULTS Based on 2DE, 15 proteins were significantly up-regulated or down-regulated in eight subjects with asthma compared with eight control subjects. The protein levels of Gc, hemopexin, and haptoglobin-b were increased, whereas the a1- antitrypsin and glutathione S-transferase levels were decreased in subjects with asthma. The Gc concentration in BAL fluid was significantly elevated in 67 subjects with asthma compared with that in 22 control subjects (P < 0.009). The Gc was significantly correlated with the neutrophil percentage in BAL fluid of subjects with asthma (P = 0.001). Gc mRNA and protein levels were higher in ovalbumin-sensitized/ challenged asthma mice than in sham-treated mice. Gc protein were expressed on alveolar macrophages and on epithelial cells. Treatment with an anti-Gc antibody dose-dependently reduced the ovalbumin sensitization/challenge-induced enhancement of airway hyperreactivity, airway inflammation, goblet cell hyperplasia,and levels of eotaxin, interleukin-4, -5, and -13, and interferon-g. CONCLUSIONS Gc may be involved in the development of asthma, and the neutralization of Gc protein could be a therapeutic strategy for asthma.
Collapse
Affiliation(s)
- Shin-Hwa Lee
- Genome Research Center for Allergy and Respiratory disease, Soonchunhyang University Hospital, Bucheon, Gyeonggi-do, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Varanasi SS, Tuck SP, Mastana SS, Dennison E, Cooper C, Vila J, Francis RM, Datta HK. Lack of association of bone morphogenetic protein 2 gene haplotypes with bone mineral density, bone loss, or risk of fractures in men. J Osteoporos 2011; 2011:243465. [PMID: 22013543 PMCID: PMC3195445 DOI: 10.4061/2011/243465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 08/10/2011] [Indexed: 11/20/2022] Open
Abstract
Introduction. The association of bone morphogenetic protein 2 (BMP2) with BMD and risk of fracture was suggested by a recent linkage study, but subsequent studies have been contradictory. We report the results of a study of the relationship between BMP2 genotypes and BMD, annual change in BMD, and risk of fracture in male subjects. Materials and Methods. We tested three single-nucleotide polymorphisms (SNPs) across the BMP2 gene, including Ser37Ala SNP, in 342 Caucasian Englishmen, comprising 224 control and 118 osteoporotic subjects. Results. BMP2 SNP1 (Ser37Ala) genotypes were found to have similar low frequency in control subjects and men with osteoporosis. The major informative polymorphism, BMP2 SNP3 (Arg190Ser), showed no statistically significant association with weight, height, BMD, change in BMD at hip or lumbar spine, and risk of fracture. Conclusion. There were no genotypic or haplotypic effects of the BMP2 candidate gene on BMD, change in BMD, or fracture risk identified in this cohort.
Collapse
Affiliation(s)
- Satya S. Varanasi
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK,Department of Biology, The University of York, York YO10 5YW, UK
| | - Stephen P. Tuck
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK,Department of Rheumatology, The James Cook University Hospital, Middlesbrough TS4 3BW, UK
| | - Sarabjit S. Mastana
- Human Genetics Laboratory, SSEHS, Loughborough University, Loughborough LE11 3TU, UK
| | - Elaine Dennison
- MRC Environmental Epidemiology Unit, University of Southampton, Southampton SO16 6YD, UK
| | - Cyrus Cooper
- MRC Environmental Epidemiology Unit, University of Southampton, Southampton SO16 6YD, UK
| | - Josephine Vila
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK,Department of Rheumatology, The James Cook University Hospital, Middlesbrough TS4 3BW, UK
| | - Roger M. Francis
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Harish K. Datta
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK,*Harish K. Datta:
| |
Collapse
|
23
|
Abstract
The multiple factors contributing to the pathogenesis of osteoporosis include genetic and environmental factors. Because decrease in bone mineral density (BMD) is the major clinical indicator and a useful quantitative trait, many association and linkage studies of BMD have been conducted. Although the series of studies showed apparently significant associations, the genes have not been found that can be utilized in clinical practice. Several genes identified in robust genome-wide association studies will be the new cutting edge in genetic studies of osteoporosis. Our recent reports of functional single nucleotide polymorphism in the tissue-nonspecific alkaline phosphatase gene and gamma-carboxylase gene are presented in this review to discuss the future prospects in the genetic research of osteoporosis from the point of view of genome-nutrition interaction.
Collapse
Affiliation(s)
- Takayuki Hosoi
- Department of Clinical Research and Development, National Center for Geriatrics and Gerontology, Aichi, Japan.
| |
Collapse
|
24
|
Li WF, Hou SX, Yu B, Li MM, Férec C, Chen JM. Genetics of osteoporosis: accelerating pace in gene identification and validation. Hum Genet 2009; 127:249-85. [PMID: 20101412 DOI: 10.1007/s00439-009-0773-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 11/25/2009] [Indexed: 02/06/2023]
Abstract
Osteoporosis is characterized by low bone mineral density and structural deterioration of bone tissue, leading to an increased risk of fractures. It is the most common metabolic bone disorder worldwide, affecting one in three women and one in eight men over the age of 50. In the past 15 years, a large number of genes have been reported as being associated with osteoporosis. However, only in the past 4 years we have witnessed an accelerated pace in identifying and validating osteoporosis susceptibility loci. This increase in pace is mostly due to large-scale association studies, meta-analyses, and genome-wide association studies of both single nucleotide polymorphisms and copy number variations. A comprehensive review of these developments revealed that, to date, at least 15 genes (VDR, ESR1, ESR2, LRP5, LRP4, SOST, GRP177, OPG, RANK, RANKL, COLIA1, SPP1, ITGA1, SP7, and SOX6) can be reasonably assigned as confirmed osteoporosis susceptibility genes, whereas, another >30 genes are promising candidate genes. Notably, confirmed and promising genes are clustered in three biological pathways, the estrogen endocrine pathway, the Wnt/beta-catenin signaling pathway, and the RANKL/RANK/OPG pathway. New biological pathways will certainly emerge when more osteoporosis genes are identified and validated. These genetic findings may provide new routes toward improved therapeutic and preventive interventions of this complex disease.
Collapse
Affiliation(s)
- Wen-Feng Li
- Department of Orthopaedics, The First Affiliated Hospital, General Hospital of the People's Liberation Army, 100037 Beijing, China
| | | | | | | | | | | |
Collapse
|
25
|
McCullough ML, Bostick RM, Mayo TL. Vitamin D Gene Pathway Polymorphisms and Risk of Colorectal, Breast, and Prostate Cancer. Annu Rev Nutr 2009; 29:111-32. [DOI: 10.1146/annurev-nutr-080508-141248] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Roberd M. Bostick
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322
| | - Tinisha L. Mayo
- Department of Epidemiology, American Cancer Society, Atlanta, Georgia 30303
| |
Collapse
|
26
|
Fang Y, van Meurs JBJ, Arp P, van Leeuwen JPT, Hofman A, Pols HAP, Uitterlinden AG. Vitamin D binding protein genotype and osteoporosis. Calcif Tissue Int 2009; 85:85-93. [PMID: 19488670 PMCID: PMC2729412 DOI: 10.1007/s00223-009-9251-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 04/16/2009] [Indexed: 11/29/2022]
Abstract
Osteoporosis is a bone disease leading to an increased fracture risk. It is considered a complex multifactorial genetic disorder with interaction of environmental and genetic factors. As a candidate gene for osteoporosis, we studied vitamin D binding protein (DBP, or group-specific component, Gc), which binds to and transports vitamin D to target tissues to maintain calcium homeostasis through the vitamin D endocrine system. DBP can also be converted to DBP-macrophage activating factor (DBP-MAF), which mediates bone resorption by directly activating osteoclasts. We summarized the genetic linkage structure of the DBP gene. We genotyped two single-nucleotide polymorphisms (SNPs, rs7041 = Glu416Asp and rs4588 = Thr420Lys) in 6,181 elderly Caucasians and investigated interactions of the DBP genotype with vitamin D receptor (VDR) genotype and dietary calcium intake in relation to fracture risk. Haplotypes of the DBP SNPs correspond to protein variations referred to as Gc1s (haplotype 1), Gc2 (haplotype 2), and Gc1f (haplotype3). In a subgroup of 1,312 subjects, DBP genotype was found to be associated with increased and decreased serum 25-(OH)D(3) for haplotype 1 (P = 3 x 10(-4)) and haplotype 2 (P = 3 x 10(-6)), respectively. Similar associations were observed for 1,25-(OH)(2)D(3). The DBP genotype was not significantly associated with fracture risk in the entire study population. Yet, we observed interaction between DBP and VDR haplotypes in determining fracture risk. In the DBP haplotype 1-carrier group, subjects of homozygous VDR block 5-haplotype 1 had 33% increased fracture risk compared to noncarriers (P = 0.005). In a subgroup with dietary calcium intake <1.09 g/day, the hazard ratio (95% confidence interval) for fracture risk of DBP hap1-homozygote versus noncarrier was 1.47 (1.06-2.05). All associations were independent of age and gender. Our study demonstrated that the genetic effect of the DBP gene on fracture risk appears only in combination with other genetic and environmental risk factors for bone metabolism.
Collapse
Affiliation(s)
- Yue Fang
- Genetic Laboratory, Room Ee575, Department of Internal Medicine, Erasmus Medical Center, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | - Joyce B. J. van Meurs
- Genetic Laboratory, Room Ee575, Department of Internal Medicine, Erasmus Medical Center, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | - Pascal Arp
- Genetic Laboratory, Room Ee575, Department of Internal Medicine, Erasmus Medical Center, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | - Johannes P. T. van Leeuwen
- Genetic Laboratory, Room Ee575, Department of Internal Medicine, Erasmus Medical Center, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Huibert A. P. Pols
- Genetic Laboratory, Room Ee575, Department of Internal Medicine, Erasmus Medical Center, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - André G. Uitterlinden
- Genetic Laboratory, Room Ee575, Department of Internal Medicine, Erasmus Medical Center, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
27
|
Sinotte M, Diorio C, Bérubé S, Pollak M, Brisson J. Genetic polymorphisms of the vitamin D binding protein and plasma concentrations of 25-hydroxyvitamin D in premenopausal women. Am J Clin Nutr 2009; 89:634-40. [PMID: 19116321 DOI: 10.3945/ajcn.2008.26445] [Citation(s) in RCA: 185] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Vitamin D status, determined on the basis of 25-hydroxyvitamin D [25(OH)D] concentrations, is associated with the risk of several diseases. Vitamin D binding protein (DBP) is the major carrier of vitamin D and its metabolites, but the role of DBP single nucleotide polymorphisms (SNPs) on 25(OH)D concentrations is unclear. OBJECTIVE The objective was to evaluate the association of 2 DBP gene SNPs with 25(OH)D concentrations and explore whether such association varies according to the amount of vitamin D that needs to be transported. DESIGN This cross-sectional study included 741 premenopausal white women, mostly of French descent. Plasma 25(OH)D concentrations were measured by radioimmunoassay. DBP-1 (rs7041) and DBP-2 (rs4588) were genotyped with a Sequenom MassArray platform. Associations and interactions were modeled by using multivariate linear regression. RESULTS DBP-1 and DBP-2 SNPs were in strong linkage disequilibrium and were both associated with 25(OH)D concentrations. An additional copy of the rare allele of DBP-1 or DBP-2 was associated with lower 25(OH)D concentrations (beta = -3.29, P for trend = 0.0003; beta = -4.22, P for trend < 0.0001, respectively). These DBP polymorphisms explained as much of the variation in circulating 25(OH)D as did total vitamin D intake (r2 = 1.3% for DBP-1, r2 = 2.0% for DBP-2, and r2 < or = 1.2% for vitamin D intake). CONCLUSION Circulating 25(OH)D concentrations in premenopausal women are strongly related to DBP polymorphisms. Whether DBP rare allele carriers have a different risk of vitamin D-related diseases and whether such carriers can benefit more or less from dietary interventions, vitamin D supplementation, or sun exposure need to be clarified.
Collapse
Affiliation(s)
- Marc Sinotte
- Département de Médecine Sociale et Préventive, Université Laval, Québec, Canada
| | | | | | | | | |
Collapse
|
28
|
Al-oanzi ZH, Tuck SP, Mastana SS, Summers GD, Cook DB, Francis RM, Datta HK. Vitamin D-binding protein gene microsatellite polymorphism influences BMD and risk of fractures in men. Osteoporos Int 2008; 19:951-60. [PMID: 18038108 DOI: 10.1007/s00198-007-0516-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2007] [Accepted: 10/29/2007] [Indexed: 02/05/2023]
Abstract
UNLABELLED Here we report the results of a vitamin D-binding protein gene microsatellite polymorphism study in 170 men, comprising healthy male subjects and men with osteoporosis-related symptomatic vertebral fractures. We confirm the results of an earlier study in a different cohort, showing relationship between certain genotypes of (TAAAn)-Alu repeats and reduced BMD and vertebral fractures. INTRODUCTION Vitamin D-binding protein (DBP) plays a critical role in the transport and metabolism of metabolites of vitamin D, including the key calciotropic hormone 1alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3). METHODS We have investigated intra-intronic variable tandem (TAAA)n-Alu repeat expansion in the DBP gene in 170 men, comprising healthy male subjects and men with idiopathic osteoporosis and low trauma fractures. RESULTS AND CONCLUSIONS The predominant DBP-Alu genotype in the control subjects was 10/10 (frequency 0.421), whereas the frequency of this genotype in men with osteoporosis was 0.089. DBP-Alu alleles *10, *8 and *9, respectively, were the three commonest in both healthy subjects and men with osteoporosis. Allele *10 was associated with a lower risk of osteoporosis (OR 0.39, 95% CI 0.25-0.64; p < 0.0005), as was allele *11 (odds ratio 0.09, 95% CI 0.01-0.67; p < 0.007). Logistic regression gave similar results, showing that individuals with genotype 10/10 and 19-20 repeats (genotypes 9/10, 9/11, 10/10,) are protected from fracture or osteoporosis. Overall, there was a relationship between DBP Alu genotype and BMD, suggesting that DBP-Alu genotype may influence fracture risk. This effect may be mediated by changes in the circulating concentrations of DBP which influences free concentrations of vitamin D.
Collapse
Affiliation(s)
- Z H Al-oanzi
- School of Clinical & Laboratory Sciences, The Medical School, University of Newcastle, Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | | | | | | | | | | | | |
Collapse
|
29
|
Rodríguez-Bores L, Barahona-Garrido J, Yamamoto-Furusho JK. Basic and clinical aspects of osteoporosis in inflammatory bowel disease. World J Gastroenterol 2007; 13:6156-65. [PMID: 18069754 PMCID: PMC4171224 DOI: 10.3748/wjg.v13.i46.6156] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Low bone mineral density and the increased risk of fracture in gastrointestinal diseases have a multifactorial pathogenesis. Inflammatory bowel disease (IBD) has been associated with an increased risk of osteoporosis and osteopenia and epidemiologic studies have reported an increased prevalence of low bone mass in patients with IBD. Certainly, genetics play an important role, along with other factors such as systemic inflammation, malnutrition, hypogonadism, glucocorticoid therapy in IBD and other lifestyle factors. At a molecular level the proinflammatory cytokines that contribute to the intestinal immune response in IBD are known to enhance bone resorption. There are genes influencing osteoblast function and it is likely that LRP5 may be involved in the skeletal development. Also the identification of vitamin D receptors (VDRs) and some of its polymorphisms have led to consider the possible relationships between them and some autoimmune diseases and may be involved in the pathogenesis through the exertion of its immunomodulatory effects during inflammation. Trying to explain the physiopathology we have found that there is increasing evidence for the integration between systemic inflammation and bone loss likely mediated via receptor for activated nuclear factor kappa-B (RANK), RANK-ligand, and osteoprotegerin, proteins that can affect both osteoclastogenesis and T-cell activation. Although glucocorticoids can reduce mucosal and systemic inflammation, they have intrinsic qualities that negatively impact on bone mass. It is still controversial if all IBD patients should be screened, especially in patients with preexisting risk factors for bone disease. Available methods to measure BMD include single energy x-ray absorptiometry, DXA, quantitative computed tomography (QCT), radiographic absorptiometry, and ultrasound. DXA is the establish method to determine BMD, and routinely is measured in the hip and the lumbar spine. There are several treatments options that have proven their effectiveness, while new emergent therapies such as calcitonin and teriparatide among others remain to be assessed.
Collapse
|
30
|
McCullough ML, Stevens VL, Diver WR, Feigelson HS, Rodriguez C, Bostick RM, Thun MJ, Calle EE. Vitamin D pathway gene polymorphisms, diet, and risk of postmenopausal breast cancer: a nested case-control study. Breast Cancer Res 2007; 9:R9. [PMID: 17244366 PMCID: PMC1851389 DOI: 10.1186/bcr1642] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 12/12/2006] [Accepted: 01/23/2007] [Indexed: 11/12/2022] Open
Abstract
Introduction Vitamin D receptor (VDR) polymorphisms have been inconsistently associated with breast cancer risk. Whether risk is influenced by polymorphisms in other vitamin D metabolism genes and whether calcium or vitamin D intake modifies risk by genotype have not been evaluated. Methods We conducted a nested case-control study within the Cancer Prevention Study II Nutrition Cohort of associations between breast cancer and four VDR single-nucleotide polymorphisms (SNPs), Bsm1,Apa1,Taq1, and Fok1, a poly(A) microsatellite, and associated haplotypes (baTL and BAtS). We also examined one SNP in the 24-hydroxylase gene (CYP24A1) and two in the vitamin D-binding protein (group-specific component [GC]) gene. Participants completed a questionnaire on diet and medical history at baseline in 1992. This study includes 500 postmenopausal breast cancer cases and 500 controls matched by age, race/ethnicity, and date of blood collection. Results Incident breast cancer was not associated with any genotype examined. However, women with the Bsm1 bb SNP who consumed greater than the median intake of total calcium (≥902 mg/day) had lower odds of breast cancer compared to women with the Bb or BB genotype and less than the median calcium intake (odds ratio 0.61, 95% confidence interval 0.38 to 0.96; pinteraction = 0.01). Similar interactions were observed for Taq1 (T allele) and the poly(A) (LL) repeat. Conclusion We found no overall association between selected vitamin D pathway genes and postmenopausal breast cancer risk. However, certain VDR gene polymorphisms were associated with lower risk in women consuming high levels of calcium, suggesting that dietary factors may modify associations by VDR genotype.
Collapse
Affiliation(s)
- Marjorie L McCullough
- Epidemiology and Surveillance Research, American Cancer Society, 1599 Clifton Road NE, Atlanta, GA 30329, USA
| | - Victoria L Stevens
- Epidemiology and Surveillance Research, American Cancer Society, 1599 Clifton Road NE, Atlanta, GA 30329, USA
| | - William R Diver
- Epidemiology and Surveillance Research, American Cancer Society, 1599 Clifton Road NE, Atlanta, GA 30329, USA
| | - Heather S Feigelson
- Epidemiology and Surveillance Research, American Cancer Society, 1599 Clifton Road NE, Atlanta, GA 30329, USA
| | - Carmen Rodriguez
- Epidemiology and Surveillance Research, American Cancer Society, 1599 Clifton Road NE, Atlanta, GA 30329, USA
| | - Robin M Bostick
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA 30322, USA
| | - Michael J Thun
- Epidemiology and Surveillance Research, American Cancer Society, 1599 Clifton Road NE, Atlanta, GA 30329, USA
| | - Eugenia E Calle
- Epidemiology and Surveillance Research, American Cancer Society, 1599 Clifton Road NE, Atlanta, GA 30329, USA
| |
Collapse
|
31
|
Ezura Y, Nakajima T, Urano T, Sudo Y, Kajita M, Yoshida H, Suzuki T, Hosoi T, Inoue S, Shiraki M, Emi M. Association of a single-nucleotide variation (A1330V) in the low-density lipoprotein receptor-related protein 5 gene (LRP5) with bone mineral density in adult Japanese women. Bone 2007; 40:997-1005. [PMID: 17306638 DOI: 10.1016/j.bone.2005.06.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 05/29/2005] [Accepted: 06/13/2005] [Indexed: 01/30/2023]
Abstract
Low-density lipoprotein receptor-related protein 5 (LRP5), a co-receptor of Wnt signaling, is an important regulator of bone development and maintenance. Recently we identified correlation between an intronic single-nucleotide polymorphism (SNP) in the LRP5 gene and vertebral bone mineral density (BMD), indicating that a genetic ground exists at this locus for determination of BMD. In the study reported here, we searched for nucleotide variation(s) that might confer susceptibility to osteoporosis among an extended panel of 387 healthy subjects recruited from the same hospital (Group-A), as well as among 384 subjects from the general population in eastern Japan (Group-B). We basically focused on two potentially functional variations, Q89R (c.266A > G) and A1330V (c.3989C > T), whose functional effects by the amino-acid changes were estimated by the SIFT software program; it predicted the 1330 V allele as deleterious ("intolerant") although the minor allele of Q89R was questionable. By analyzing associations between the variant alleles and the BMD, reproducible association of the minor variant of A1330V to lower adjusted BMD levels was detected; i.e., In Group-A subjects 1330-V significantly associated with the spinal BMD Z-score (P = 0.034), and in Group-B it associated with low radial BMD (P = 0.019). From haplotype and linkage disequilibrium (LD) analysis for 29 SNPs, we detected two separate LD blocks within the entire 137-kb LRP5 locus, basically consistent with a previous report on Caucasians. One of the second block haplotype significantly associated with adjusted BMD (r = 0.15, P = 0.004). Possible combined effect of Q89R and A1330V belonging to different LD blocks was denied by multiple regression analyses. Our results indicate that genetic variations in LRP5 are important factors affecting BMD in adult women and that 1330 V may contribute to osteoporosis susceptibility, at least in Japanese.
Collapse
Affiliation(s)
- Yoichi Ezura
- Department of Molecular Biology, Institute of Gerontology, Nippon Medical School, 1-396, Kosugi-cho, Nakahara-ku, Kawasaki 211-8533, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Liu YJ, Shen H, Xiao P, Xiong DH, Li LH, Recker RR, Deng HW. Molecular genetic studies of gene identification for osteoporosis: a 2004 update. J Bone Miner Res 2006; 21:1511-35. [PMID: 16995806 PMCID: PMC1829484 DOI: 10.1359/jbmr.051002] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review summarizes comprehensively the most important and representative molecular genetics studies of gene identification for osteoporosis published up to the end of December 2004. It is intended to constitute a sequential update of our previously published review covering the available data up to the end of 2002. Evidence from candidate gene association studies and genome-wide linkage studies in humans, as well as quantitative trait locus mapping animal models are reviewed separately. Studies of transgenic and knockout mice models relevant to osteoporosis are summarized. An important extension of this update is incorporation of functional genomic studies (including DNA microarrays and proteomics) on osteogenesis and osteoporosis, in light of the rapid advances and the promising prospects of the field. Comments are made on the most notable findings and representative studies for their potential influence and implications on our present understanding of genetics of osteoporosis. The format adopted by this review should be ideal for accommodating future new advances and studies.
Collapse
Affiliation(s)
- Yong-Jun Liu
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Hui Shen
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Peng Xiao
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Dong-Hai Xiong
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Li-Hua Li
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Robert R Recker
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Hong-Wen Deng
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
33
|
Speeckaert M, Huang G, Delanghe JR, Taes YEC. Biological and clinical aspects of the vitamin D binding protein (Gc-globulin) and its polymorphism. Clin Chim Acta 2006; 372:33-42. [PMID: 16697362 DOI: 10.1016/j.cca.2006.03.011] [Citation(s) in RCA: 351] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2006] [Revised: 03/10/2006] [Accepted: 03/10/2006] [Indexed: 11/23/2022]
Abstract
The vitamin D binding protein (DBP) is the major plasma carrier protein of vitamin D and its metabolites. Unlike other hydrophobic hormone-binding systems, it circulates in a considerably higher titer compared to its ligands. Apart from its specific sterol binding capacity, DBP exerts several other important biological functions such as actin scavenging, fatty acid transport, macrophage activation and chemotaxis. The DBP-gene is a member of a multigene cluster that includes albumin, alpha-fetoprotein, and alpha-albumin/afamin. All four genes are expressed predominantly in the liver with overlapping developmental profiles. DBP is a highly polymorphic serum protein with three common alleles (Gc1F, Gc1S and Gc2) and more than 120 rare variants. The presence of unique alleles is a useful tool for anthropological studies to discriminate and to reveal ancestral links between populations. Many studies have discussed the link between DBP-phenotypes and susceptibility or resistance to osteoporosis, Graves' disease, Hashimoto's thyroiditis, diabetes, COPD, AIDS, multiple sclerosis, sarcoidosis and rheumatic fever. This article reviews the general characteristics, functions and clinical aspects of DBP.
Collapse
|
34
|
Abstract
Osteoporotic fractures in subjects at advanced age constitute a tremendous and growing problem. Established lifestyle risk factors can explain only a modest proportion of the liability to osteoporotic fractures. Bone mineral density (BMD) is considered the best established risk factor for osteoporotic fractures. The importance of genetic factors in the quality of bone is substantial, but no consensus exists yet on the genes that are involved. However, concomitant diseases, balance disorders and lifestyle habits are more important for fractures in elderly subjects. The abundance of common sequence variations, so-called polymorphisms, in the human genome and their high frequency in the population have made them targets to explain variation in the risk. Some genes have been identified that appear to be involved in the regulation of bone mass and in the pathogenesis of osteoporosis. Among these are those coding for the two estrogen receptors (ERalpha and ERbeta), the androgen receptor (AR) and the vitamin D receptor (VDR). In addition, enzymes involved in the biogenesis of estrone and estradiol have attracted attention as well as polymorphisms in the regulatory region of the type I collagen gene, COLIA1, affecting the binding site for the transcription factor Specificity protein 1 (Sp1). Although evidence suggests that the quality of bone is determined to a large extent by genetic factors, research so far has not been able to unequivocally identify genes involved in this matter. Over the last years a large number of studies have pointed to the variability in many genes and their relation with BMD, bone-related symptoms or specific therapies. The findings emphasize the complexity of the genetics of bone mass and bone loss.
Collapse
Affiliation(s)
- Jos H H Thijssen
- Laboratory of Endocrinology, University Medical Centre Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
35
|
Kidd LCR, Paltoo DN, Wang S, Chen W, Akereyeni F, Isaacs W, Ahaghotu C, Kittles R. Sequence variation within the 5' regulatory regions of the vitamin D binding protein and receptor genes and prostate cancer risk. Prostate 2005; 64:272-82. [PMID: 15717311 DOI: 10.1002/pros.20204] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The vitamin D receptor (VDR) and binding protein (DBP) mediate the cellular transport, activity, and anti-tumor action of 1,25-dihydroxyvitamin D3 [1,25-(OH)(2)D3]. The purpose of this investigation is to determine whether novel single nucleotide polymorphisms (SNPs) within the transcriptional regulatory regions of the VDR and DBP are associated with prostate cancer risk. METHODS Novel SNPs were identified in the VDR and DBP transcription regulatory gene regions and genotyped in a case-control study using male subjects with (n=258) or without (n=434) prostate cancer. RESULTS African-American men who possessed at least one variant VDR-5132 C allele had a increased risk of prostate cancer (OR=1.83; 95% CI: 1.02, 3.31). Further study revealed that the VDR-5132 T/C SNP eliminates a GATA-1 transcription factor-binding site. CONCLUSION The VDR-5132 T/C SNP, resulting in potential elimination of the GATA-1 transcription factor-binding site, may increase prostate cancer susceptibility in African-Americans. Confirmation of these findings is needed in larger observational studies.
Collapse
Affiliation(s)
- La Creis R Kidd
- Department of Pharmacology and Toxicology, Cancer Prevention and Control Program, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Goseki-Sone M, Sogabe N, Fukushi-Irie M, Mizoi L, Orimo H, Suzuki T, Nakamura H, Orimo H, Hosoi T. Functional analysis of the single nucleotide polymorphism (787T>C) in the tissue-nonspecific alkaline phosphatase gene associated with BMD. J Bone Miner Res 2005; 20:773-82. [PMID: 15824850 DOI: 10.1359/jbmr.041229] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Revised: 12/02/2004] [Accepted: 12/17/2004] [Indexed: 11/18/2022]
Abstract
UNLABELLED Polymorphisms of the TNSALP gene have not previously been studied as a possible determinant for variations in BMD or as a predisposing genetic factor for osteoporosis. This study showed a significantly higher association between the 787T>C (Tyr246His) TNSALP gene and BMD among 501 postmenopausal women. Furthermore, the effects of amino acid substitution on the catalytic property of the protein translated from the 787T>C gene were examined. INTRODUCTION Alkaline phosphatase (ALP) is present mainly on the cell membrane in various tissues and hydrolyzes a variety of monophosphate esters into inorganic phosphoric acid and alcohol. Human ALPs are classified into four types: tissue-nonspecific, intestinal, placental, and germ cell types. Based on studies of hypophosphatasia, which is a systemic skeletal disorder resulting from a tissue-nonspecific ALP (TNSALP) deficiency, TNSALP was suggested to be indispensable for bone mineralization. MATERIALS AND METHODS We explored the possibility that the TNSALP gene may contribute to age-related bone loss in humans by examining the association between TNSALP gene polymorphisms and BMD in 501 Japanese postmenopausal women. To analyze the protein translated from the TNSALP gene associated with BMD, we constructed a TNSALP cDNA expression plasmid. RESULTS We genotyped two single nucleotide polymorphisms (787T>C[Tyr246His] and 876A>G[Pro275Pro]), which proved to be in complete linkage disequilibrium. There was a significant difference in BMD and the BMD score adjusted for age and body weight (Z score) among haplotypes (p = 0.041), which was lowest among 787T/876A homozygotes, highest among 787T>C/876A>G homozygotes, and intermediate among heterozygotes. In subgroups divided by age, haplotypes were significantly associated with BMD in older postmenopausal women (>74 years; p = 0.001), but not in younger postmenopausal women (<74 years; p = 0.964). Expression of the 787T>C TNSALP gene using COS-1 cells showed that the protein translated from 787T>C had ALP-specific activity similar to that of 787T. Interestingly, the K(m) value for TNSALP in cells transfected with the 787T>C TNSALP gene was decreased significantly compared with that of cells bearing the 787T gene, reflecting the higher affinity. CONCLUSIONS These results suggest that variation in TNSALP may be an important determinant of age-related bone loss in humans and that the phosphate metabolism pathway may provide a novel target for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Masae Goseki-Sone
- Department of Food and Nutrition, Japan Women's University, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Vitamin D-binding protein (DBP) is a multi-functional plasma protein with many important functions. These include transport of vitamin D metabolites, control of bone development, binding of fatty acids, sequestration of actin and a range of less-defined roles in modulating immune and inflammatory responses. Exploitation of the unique properties of DBP could enable the development of important therapeutic agents for the treatment of a variety of diseases.
Collapse
Affiliation(s)
- Peter T Gomme
- Research and Development, CSL Limited, Bioplasma Division, 189-209 Camp Road, Broadmeadows, Victoria 3047, Australia
| | | |
Collapse
|
38
|
Lauridsen AL, Vestergaard P, Hermann AP, Moller HJ, Mosekilde L, Nexo E. Female premenopausal fracture risk is associated with gc phenotype. J Bone Miner Res 2004; 19:875-81. [PMID: 15125786 DOI: 10.1359/jbmr.040133] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2003] [Revised: 12/22/2003] [Accepted: 12/30/2003] [Indexed: 02/06/2023]
Abstract
UNLABELLED The phenotype of the vitamin D binding and macrophage activating protein, Gc, is a predictor of premenopausal bone fracture risk, possibly mediated through activation of osteoclasts. This was concluded from a study on 595 Danish perimenopausal women 45-58 years of age (30,040 person years). INTRODUCTION The multifunctional plasma protein Gc, also known as group-specific component, Gc globulin, or vitamin D binding protein (DBP), has two functions with relation to bone tissue: it is the major carrier protein of vitamin D in the circulation, and deglycosylation converts it into a very potent macrophage- and osteoclast-activating factor (Gc-MAF). There are several phenotypes of Gc, and in this study, we examined the relation between Gc phenotype and bone fragility. MATERIALS AND METHODS By isoelectric focusing we identified the Gc phenotype of 595 white recent postmenopausal women enrolled into the Danish Osteoporosis Prevention Study (DOPS) and identified three groups: Gc1-1 (n = 323), Gc1-2 (n = 230), and Gc2-2 (n = 42). Differences between the three groups were examined with respect to number of fractures before enrollment, BMC and BMD, and various biochemical and clinical parameters, including the concentration of Gc measured by immunonephelometry and the concentration of the macrophage marker soluble CD163 measured by ELISA. RESULTS AND CONCLUSIONS The risk of having at least one premenopausal bone fracture (total number of women with fracture = 179) differed significantly (p = 0.017) in women with phenotype Gc1-1 (110/323 = 0.34), Gc1-2 (63/230 = 0.27), and Gc2-2 (6/42 = 0.14). The differences were even more striking (p = 0.005) for fractures caused by low-energy traumas. Using logistic regression, we found the relative risk of premenopausal fracture to be 0.32 (0.13-0.80) in Gc2-2 compared with Gc1-1. We propose that the Gc phenotypes cause differences in osteoclast activity, a theory supported by our finding of lower levels of Gc and of soluble CD163 in women with Gc2-2 compared with Gc1-1.
Collapse
Affiliation(s)
- Anna Lis Lauridsen
- Department of Clinical Biochemistry, AKH, Aarhus University Hospital, Aarhus C, Denmark.
| | | | | | | | | | | |
Collapse
|