1
|
Zhang Y, Li M, Yan S, Zhou Y, Gao W, Niu R, Xu X, Yao B. Enantioselective Optical Trapping of Multiple Pairs of Enantiomers by Focused Hybrid Polarized Beams. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309395. [PMID: 38196155 DOI: 10.1002/smll.202309395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/13/2023] [Indexed: 01/11/2024]
Abstract
Enantiomers (opposite chiral molecules) usually exhibit different effects when interacting with chiral agents, thus the identification and separation of enantiomers are of importance in pharmaceuticals and agrochemicals. Here an optical approach is proposed to enantioselective trapping of multiple pairs of enantiomers by a focused hybrid polarized beam. Numerical results indicate that such a focused beam shows multiple local optical chirality of opposite signs in the focal plane, and can trap the corresponding enantiomers near the extreme value of optical chirality density according to the handedness of enantiomers. The number and positions of trapped enantiomers can be changed by altering the value and sign of polarization orders of hybrid polarized beams, respectively. The key to realizing enantioselective optical trapping of enantiomers is that the chiral optical force exerted on enantiomers in this focused field is stronger than the achiral optical force. The results provide insight into the optical identification and separation of multiple pairs of enantiomers and will find applications in chiral detection and sensing.
Collapse
Affiliation(s)
- Yanan Zhang
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Manman Li
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China
| | - Shaohui Yan
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China
| | - Yuan Zhou
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenyu Gao
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruixin Niu
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohao Xu
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China
| | - Baoli Yao
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Piłka J, Kwaśny M, Filipkowski A, Buczyński R, Karpierz MA, Laudyn UA. A Gaussian to Vector Vortex Beam Generator with a Programmable State of Polarization. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7794. [PMID: 36363385 PMCID: PMC9654547 DOI: 10.3390/ma15217794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
We study an optical device designed for converting the polarized Gaussian beam into an optical vortex of tunable polarization. The proposed device comprised a set of three specially prepared nematic liquid crystal cells and a nano-spherical phase plate fabricated from two types of glass nanotubes. This device generates a high-quality optical vortex possessing one of the multiple polarization states from the uniformly polarized input Gaussian beam. Its small size, simplicity of operation, and electrical steering can be easily integrated into the laboratory and industrial systems, making it a promising alternative to passive vortex retarders and spatial light modulators.
Collapse
Affiliation(s)
- Jacek Piłka
- Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
| | - Michał Kwaśny
- Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
| | - Adam Filipkowski
- Photonic Materials Group, Łukasiewicz Research Network-Institute of Microelectronics and Photonics, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Ryszard Buczyński
- Photonic Materials Group, Łukasiewicz Research Network-Institute of Microelectronics and Photonics, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Mirosław A. Karpierz
- Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
| | - Urszula A. Laudyn
- Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
| |
Collapse
|