1
|
Zeng L, Ding X, Liu J, Wang X, Ye Y, Wu H, Wang P, Xi X, Zhang H, Shi C, Xi F, Xu X. Novel Bidirectional Output Ytterbium-Doped High Power Fiber Lasers: From Continuous to Quasi-Continuous. MICROMACHINES 2024; 15:153. [PMID: 38276852 PMCID: PMC11154347 DOI: 10.3390/mi15010153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
Traditional ytterbium-doped high-power fiber lasers generally use a unidirectional output structure. To reduce the cost and improve the efficiency of the fiber laser, we propose a bidirectional output fiber laser (BOFL). The BOFL has many advantages over that of the traditional unidirectional output fiber laser (UOFL) and has a wide application in the industrial field. In theory, the model of the BOFL is established, and a comparison of the nonlinear effect in the traditional UOFL and the BOFL is studied. Experimentally, high-power continuous wave (CW) and quasi-continuous wave (QCW) BOFLs are demonstrated. In the continuous laser, we first combine the BOFL with the oscillating amplifying integrated structure, and a near-single-mode bidirectional 2 × 4 kW output with a total power of above 8 kW is demonstrated. Then, with the simple BOFL, a CW bidirectional 2 × 5 kW output with a total power of above 10 kW is demonstrated. By means of pump source modulation, a QCW BOFL is developed, and the output of a near-single mode QCW laser with a peak output of 2 × 4.5 kW with a total peak power of more than 9 kW is realized. Both CW and QCW output BOFL are the highest powers reported at present.
Collapse
Affiliation(s)
- Lingfa Zeng
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China; (L.Z.); (X.D.); (J.L.); (Y.Y.); (H.W.); (P.W.); (X.X.); (H.Z.); (C.S.); (F.X.); (X.X.)
| | - Xinyi Ding
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China; (L.Z.); (X.D.); (J.L.); (Y.Y.); (H.W.); (P.W.); (X.X.); (H.Z.); (C.S.); (F.X.); (X.X.)
| | - Jiaqi Liu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China; (L.Z.); (X.D.); (J.L.); (Y.Y.); (H.W.); (P.W.); (X.X.); (H.Z.); (C.S.); (F.X.); (X.X.)
| | - Xiaolin Wang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China; (L.Z.); (X.D.); (J.L.); (Y.Y.); (H.W.); (P.W.); (X.X.); (H.Z.); (C.S.); (F.X.); (X.X.)
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
- Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha 410073, China
| | - Yun Ye
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China; (L.Z.); (X.D.); (J.L.); (Y.Y.); (H.W.); (P.W.); (X.X.); (H.Z.); (C.S.); (F.X.); (X.X.)
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
- Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha 410073, China
| | - Hanshuo Wu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China; (L.Z.); (X.D.); (J.L.); (Y.Y.); (H.W.); (P.W.); (X.X.); (H.Z.); (C.S.); (F.X.); (X.X.)
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
- Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha 410073, China
| | - Peng Wang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China; (L.Z.); (X.D.); (J.L.); (Y.Y.); (H.W.); (P.W.); (X.X.); (H.Z.); (C.S.); (F.X.); (X.X.)
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
- Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha 410073, China
| | - Xiaoming Xi
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China; (L.Z.); (X.D.); (J.L.); (Y.Y.); (H.W.); (P.W.); (X.X.); (H.Z.); (C.S.); (F.X.); (X.X.)
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
- Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha 410073, China
| | - Hanwei Zhang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China; (L.Z.); (X.D.); (J.L.); (Y.Y.); (H.W.); (P.W.); (X.X.); (H.Z.); (C.S.); (F.X.); (X.X.)
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
- Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha 410073, China
| | - Chen Shi
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China; (L.Z.); (X.D.); (J.L.); (Y.Y.); (H.W.); (P.W.); (X.X.); (H.Z.); (C.S.); (F.X.); (X.X.)
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
- Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha 410073, China
| | - Fengjie Xi
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China; (L.Z.); (X.D.); (J.L.); (Y.Y.); (H.W.); (P.W.); (X.X.); (H.Z.); (C.S.); (F.X.); (X.X.)
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
- Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha 410073, China
| | - Xiaojun Xu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China; (L.Z.); (X.D.); (J.L.); (Y.Y.); (H.W.); (P.W.); (X.X.); (H.Z.); (C.S.); (F.X.); (X.X.)
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
- Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha 410073, China
| |
Collapse
|
2
|
Ding X, Zeng L, Wang L, Wu H, Wang P, Zhang H, Wang X, Ning Y, Xi F, Xu X. 2 × 4.5 kW bidirectional output near-single-mode quasi-continuous wave monolithic fiber laser. Sci Rep 2023; 13:21218. [PMID: 38040833 PMCID: PMC10692086 DOI: 10.1038/s41598-023-48478-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023] Open
Abstract
Quasi-continuous wave (QCW) laser has a very broad application in the industrial field, especially in additive manufacturing, surface treatment, laser cutting, laser cleaning, and laser drilling. Compared with the unidirectional fiber laser, the bidirectional output can be achieved two ports high power output with only one resonator, which can greatly reduce the industrial cost. However, there are few researches on QCW fiber lasers with bidirectional output. Here, we optimized and demonstrated a bidirectional output QCW laser with output power of 2 × 4.5 kW based on a double-clad ytterbium-doped fiber with a core/cladding diameter of 25/400 μm. The peak power at both ends reached 4515 W and 4694 W, respectively. The Raman suppression ratio at both ends of A and B is about 12 dB, and the beam quality factor M2 is about 1.37 and 1.42, respectively. The corresponding optical-to-optical efficiency is 79%. To the best of our knowledge, this is the highest peak power of QCW laser with near-single-mode beam quality in a bidirectional structure laser.
Collapse
Affiliation(s)
- Xinyi Ding
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China
| | - Lingfa Zeng
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China
| | - Li Wang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China
| | - Hanshuo Wu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha, 410073, China
| | - Peng Wang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha, 410073, China
| | - Hanwei Zhang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha, 410073, China
| | - Xiaolin Wang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China.
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha, 410073, China.
| | - Yu Ning
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China.
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha, 410073, China.
| | - Fengjie Xi
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha, 410073, China
| | - Xiaojun Xu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha, 410073, China
| |
Collapse
|
3
|
Kholaif S, Jauregui C, Limpert J. Mitigation of transverse mode instability by heat-load modulation. OPTICS EXPRESS 2023; 31:26496-26508. [PMID: 37710509 DOI: 10.1364/oe.495830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/28/2023] [Indexed: 09/16/2023]
Abstract
We present the first experimental realization of a new mitigation strategy for TMI based on controlling the phase shift between the modal intensity pattern and the thermally induced refractive index grating. If specific modulation parameters are applied while pulsing the seed and/or pump radiation, the direction of energy transfer is forced from the higher-order modes into the fundamental mode. In this way, the fiber amplifier can operate at an average output power significantly higher than the TMI threshold with a diffraction-limited beam profile. A stable beam profile is observed at an average output power that is 83% higher than the TMI threshold of the free-running system, with an intra-burst average power that is 4.15 times higher than the TMI threshold.
Collapse
|
4
|
Wang L, Zhang H, Xi X, Wang P, Zhang D, Yang B, Shi C, Wang X, Xu X. Simple method for high average power supercontinuum generation based on Raman mode locking in a quasi-CW fiber laser oscillator. OPTICS LETTERS 2022; 47:5809-5812. [PMID: 37219109 DOI: 10.1364/ol.475730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/15/2022] [Indexed: 05/24/2023]
Abstract
A simple generation method for a supercontinuum (SC) based on Raman mode locking (RML) in a quasi-continuous wave (QCW) fiber laser oscillator is demonstrated experimentally and analyzed in this paper. The power of the SC is adjustable by changing the pump repetition rate and duty cycle. Under the pump repetition rate of 1 kHz and duty cycle of 11.5%, an SC output with a spectral range of 1000-1500 nm is obtained at a maximum output power of 791 W. The RML is fully analyzed in terms of the spectral and temporal dynamics. RML plays a major role in this process and further enriches the generation of the SC. To the best of the authors' knowledge, this is the first report on directly generating a high and adjustable average power SC using a large-mode-area (LMA)-based oscillator, which provides a proof-of-concept experiment for achieving a high average power SC source and greatly improves the potential application value of the SC source.
Collapse
|